

EPA Region 5 Records Ctr.

SUPPLEMENTAL LNAPL INVESTIGATION

Lenz Oil Site Lemont, Illinois

SUPPLEMENTAL LNAPL INVESTIGATION

Lenz Oil Site Lemont, Illinois

TABLE OF CONTEN 15

			<u>Page</u>	
EXE	CUTIV	E SUMMARY	i	
1.0	INTI	RODUCTION	1	
2.0	SCO	PE OF WORK	2	
3.0	FIELD ACTIVITIES4			
	3.1	LNAPL AND WATER LEVEL MONITORING	4	
	3.2	AMBIENT AIR MONITORING	6	
	3.3	LNAPL SAMPLING	6	
	3.4	RESIDENTIAL WELL ABANDONMENT	7	
	3.5	SOIL BORINGS	8	
	3.6	PIEZOMETER INSTALLATIONS	8	
	3.7	GROUNDWATER SAMPLING	9	
	3.8	PIEZOMETER MODIFICATION	9	
	3.9	SURVEYING	9	
	3.10	LNAPL RECOVERY TESTS	10	
	3.11	RIVER BANK INSPECTION	10	
4.0	FIELD INVESTIGATION RESULTS		11	
	4.1	LNAPL AND WATER LEVEL MONITORING RESULTS	11	
	4.2	LNAPL PRESENCE	12	
	4.3	LNAPL THICKNESS		
	4.4	LNAPL LATERAL MIGRATION	15	
	4.5	LNAPL SAMPLING RESULTS	17	
	4.6	SOIL ANALYTICAL RESULTS	18	
	4.7	GROUNDWATER ANALYTICAL RESULTS	18	
	4.8	LNAPL RECOVERY TEST RESULTS	20	
REFI	ERENC	ES	22	

LIST OF FIGURES

FIGURE 1.1	SITE LOCATION
FIGURE 1.2	SITE PLAN WITH EXISTING MONITORING WELL, PIEZOMETER AND SOIL BORING LOCATIONS
FIGURE 3.1	SOIL BORING LOCATIONS
FIGURE 3.2	NEW PIEZOMETER AND STAFF GAUGE LOCATIONS
FIGURE 4.1	LNAPL LIMITS
FIGURE 4.2	SHALLOW GROUNDWATER CONTOURS - SEPTEMBER 10, 1997
FIGURE 4.3	SHALLOW GROUNDWATER CONTOURS - SEPTEMBER 25, 1997
FIGURE 4.4	HYDROGRAPH OF GROUNDWATER ELEVATIONS
FIGURE 4.5	SCHEMATIC OF ACTUAL VS. APPARENT LNAPL THICKNESS IN A WELL AND ADJACENT FORMATION
FIGURE 4.6	EFFECT OF WATER TABLE ON LNAPL THICKNESS
FIGURE 4.7	SCHEMATIC OF A SMEAR ZONE
FIGURE 4.8	GROUNDWATER ANALYTICAL RESULTS

LIST OF TABLES

TABLE 3.1	WATER LEVEL AND LNAPL MEASUREMENTS JULY 31, 1997
TABLE 3.2	WATER LEVEL AND LNAPL MEASUREMENTS (AUGUST 2, 1997 AND SEPTEMBER 10 AND 15, 1997)
TABLE 3.3	SUMMARY OF PIEZOMETERS CONSTRUCTION DETAILS
TABLE 3.4	SUMMARY OF PIEZOMETER DEVELOPMENT PARAMETERS
TABLE 3.5	SUMMARY OF MONITORING WELL/PIEZOMETER PURGING PARAMETERS
TABLE 4.1	GROUNDWATER ELEVATION HISTORY
TABLE 4.2	SUMMARY OF VOCs DETECTED IN LNAPL SAMPLES
TABLE 4.3	SUMMARY OF VOCs DETECTED IN SOIL SAMPLES
TABLE 4.4	SUMMARY OF LNAPL RECOVERY TEST RESULTS

LIST OF APPENDICES

APPENDIX A WATER WELL SEALING FORM APPENDIX B SOIL BORING STRATIGRAPHIC LOGS APPENDIX C PIEZOMETER STRATIGRAPHIC AND INSTRUMENTATION LOGS APPENDIX D ERM'S GROUNDWATER CONTOUR MAPS (ILLUSTRATING HIGH AND LOW WATER TABLE CONDITIONS) TORKELSON ANALYTICAL REPORT APPENDIX E APPENDIX F IEA ANALYTICAL REPORT DATA VALIDATION MEMOS APPENDIX G FIGURES ILLUSTRATING SHALLOW GROUNDWATER APPENDIX H ANALYTICAL RESULTS FROM THE RI LNAPL RECOVERY DATA AND GRAPHS APPENDIX I

EXECUTIVE SUMMARY

The Lenz Oil Superfund Site (Site), located near Lemont, Illinois, is a former oil transfer and storage facility on 4.9 acres of land located at Jeans Road and Route 83. An additional area located south of Jeans Road has been impacted by past Lenz Oil operations.

In the late 1980s, the Illinois Environmental Protection Agency (IEPA) conducted remedial activities which involved removal of waste, tanks, drums, and other facilities. IEPA's remedy included the removal and on-Site incineration of approximately 21,000 tons of contaminated soil and LNAPL. The IEPA also installed an alternate water supply for local residents.

Following the IEPA remedial activity, a Remedial Investigation/Feasibility Study (RI/FS) was conducted for the Site by a group of PRPs (PRP Group) pursuant to an Administrative Consent Order. The RI/FS was focused on characterizing remaining contamination present in soil, LNAPL and groundwater. A further evaluation of the extent and nature of LNAPL contamination was conducted in 1994 by the PRP Group's contractor, ERM.

Field activities associated with ERM's LNAPL investigation were performed during a three month period which extended from August 1, 1994 through November 8, 1994. The LNAPL investigation consisted of the following activities:

- installation of 10 piezometers and nine soil borings;
- collection and analysis of three LNAPL samples;
- collection and analysis of five subsurface soil samples;
- surveying activities;
- measurement of water level and LNAPL levels on eleven occasions during a three month period; and
- bail-down testing of six monitoring wells/piezometers.

Based on the data collected during the three month LNAPL investigation, ERM estimated the surficial area of the LNAPL layer south of the excavation area at 39,100 square feet.

in the summer of 1997, oil was observed in a private well (not used for potable use) at the William's residence located on the property south of the Site. This finding, along with measurements from existing monitoring wells and piezometers indicated that the LNAPL layer defined by the RI/FS was larger than originally estimated, perhaps significantly impacting not only the cost of remedial alternatives, but the selection of an appropriate remedy. To address these concerns, the PRP Group agreed to conduct a Supplemental LNAPL Investigation and update the FS.

A Supplemental LNAPL Investigation was conducted to update the nature and extent of LNAPL, update LNAPL smear zone thickness, evaluate whether high pressure petroleum pipelines in the vicinity of the site are contributing to Site contamination and to further characterize the extent to which volatile organic compounds (VOCs) may be present in the groundwater downgradient of the LNAPL area.

Based on information collected from nine new boreholes, six new piezometers, and 42 existing monitoring wells and piezometers, CRA estimated that the LNAPL layer covers approximately 67,000 square feet. The area is shown as a shaded area on Figure 4.1 of Section 4. This area is approximately 70 percent larger than the area estimated previously during the 1994 LNAPL Investigation.

Although the LNAPL layer is now estimated to be larger than previously calculated, new data and a longer history of monitoring has allowed for refinement of the estimates made in 1994. CRA does not consider that the increase in size of the LNAPL layer is due to any significant migration but rather that the LNAPL layer is relatively immobile. The following Site data support characterization of the LNAPL layer at the Lenz Oil Site as relatively stable:

• The observation of LNAPL at the leading edge of the LNAPL layer (P24, P24S, P25, and P-25S) has been infrequent and appears to be strongly influenced by water table elevation fluctuations.

- VOCs were not detected in the groundwater samples collected from the piezometers located directly downgradient of the LNAPL layer.
- The lack of visual signs of soil staining or a smear zone in newly installed piezometers.
- The tanks, drums and impoundments on Site and much of the LNAPL on Site was removed in the late 1980s by the IEPA.

The estimated true thickness of LNAPL within the soil/bedrock formation at the three locations recently tested ranged from 0.16 feet to 1.6 feet and is considerably less than the apparent thickness. However, because this thin layer of LNAPL has been moved up and down through the soil column by water table fluctuations the soil/bedrock above and below the water table has been contaminated. This area is known as the smear zone. CRA estimates that the smear zone averages 3.5 feet across the LNAPL layer.

During the Supplemental LNAPL Investigation, three samples of LNAPL were collected and fingerprinted and have shown that the LNAPL is a mixture of motor oil and diesel fuel with VOCs. Some LNAPL was also found to contain gasoline and some samples appear to be only 2 to 7 years old, which suggests a source other than Lenz Oil. For that reason, ten soil borings were drilled along high pressure petroleum pipelines located on the western edge of the LNAPL area. These boreholes found low levels of petroleum-related compounds in shallow soils, but did not identify any significant release from the pipelines. Consequently, CRA does not consider these low level concentrations to be a result of the Lenz Oil LNAPL laver.

The Supplemental LNAPL Investigation also evaluated VOCs in groundwater downgradient of the LNAPL layer. VOCs were not detected in groundwater samples collected from piezometers located immediately downgradient of the LNAPL area. This finding supports the conclusions that VOCs in the LNAPL do not readily dissolve in the groundwater, and, to the extent small quantities of VOCs dissolve in the groundwater, they dissipate as a result of natural attenuation processes.

Additional work conducted as part of the Supplemental LNAPL investigation shows:

- no evidence of LNAPL along the northern bank of the Des Plaines River;
- that the Williams' well has been abandoned in accordance with DuPage County Department of Health requirements; and
- that levels of VOCs in the air of Mrs. William's basement existing before the well was abandoned were negligible.

USEPA and IEPA required that the Supplemental Investigation Report and the FS Addendum be submitted prior to completion of all of the monitoring rounds required as part of the Work Plan for the investigation. The Agency's expectation is that additional data obtained following submittal of these reports will confirm and support the conclusions presented therein.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) was retained by the PRP Group to conduct a Supplemental LNAPL Investigation at the Lenz Oil Site (Site), located near Lemont, Illinois (see Figure 1.1). This report summarizes the recent field investigative activities completed at the Site.

The purpose of the Supplemental LNAPL Investigation was as follows:

- update the extent of LNAPL and smear zone estimates,
- update LNAPL thickness measurements,
- evaluate whether high pressure petroleum pipelines are contributing to Site contamination, and
- evaluate groundwater quality downgradient of the LNAPL area.

Figure 1.2 presents a Site plan.

2.0 SCOPE OF WORK

The scope of work for the Supplemental LNAPL Investigation was based on CRA's letter to USEPA dated August 29, 1997 and consisted of the following activities:

- monitoring of water levels and the presence of LNAPL in the residential water well and existing monitoring wells and piezometers;
- monitoring of the ambient air in the basement at the William's house where the residential well is located;
- collection of LNAPL samples from the residential water well, one monitoring well, and one piezometer for chemical analyses;
- abandonment of the residential water well;
- installation of ten soil borings adjacent to the petroleum pipeline which is parallel to the western property line of the Site;
- installation of six shallow piezometers;
- collection and analyses of groundwater samples from two existing shallow monitoring wells and three newly installed piezometers;
- modifications to the protective cover of piezometer P25;
- surveying activities;
- completion of three LNAPL recovery tests; and
- inspection of the northern bank of the Des Plaines River.

The field investigative activities discussed in this report were conducted during the period from July 31, 1997 through September 25, 1997. Piezometer and soil boring installations, fluid measurements and sample collection activities were performed in accordance with the procedures outlined in ERM's Field Sampling Plan, Addendum A, Revision 4, June 27, 1994. The following sections describe the activities conducted as part of, and summarize the data obtained from, the Supplemental LNAPL Investigation.

3.2 AMBIENT AIR MONITORING

The water well located in Mrs. William's house at Rural Route 2 and Jeans Road was located within a small off-shoot of the basement. Ambient air monitoring within the basement was conducted on July 31, 1997 using a Mine Safety Appliances (MSA) Gas Scope Combustible Gas Meter and a Photovac MicroTip Organic Vapor Analyzer. The ambient air above the water well and throughout the basement was monitored for the presence of combustible and organic vapors. No combustible vapors were detected. Organic vapors were only detected directly above the water well, immediately following the removal of the well cap. A peak reading of 2.8 parts per million (ppm) was detected above the water well. Shortly after the removal of the well cap, the organic vapor reading above the water well dropped to zero. No other organic vapors were detected in the basement.

3.3 LNAPL SAMPLING

During the first LNAPL and water level monitoring event conducted on July 31, 1997, the LNAPL observed in the residential well appeared to have a slightly different odor, color, and viscosity compared to the LNAPL in the monitoring well and piezometers also observed on that day. To evaluate the source/type of LNAPL observed, LNAPL samples were collected from the residential well, monitoring well MW-5S, and piezometer P19 (MW-5S and P19 have historically contained LNAPLs). These samples were collected on August 7, 1997. LNAPL samples were collected using a peristaltic pump and a dedicated new section of polyethylene tubing. Prior to sampling, the LNAPL levels were measured in the wells/piezometer. A new section of polyethylene tubing was lowered into the well/piezometer to the base of the LNAPL layer. The peristaltic pump was then used to draw the LNAPL from the well. LNAPL samples were analyzed for gas chromatograph hydrocarbon finger-printing and VOCs dissolved in the LNAPL. Hydrocarbon finger-printing analyses were completed by Torkelson Geochemistry, Inc. of Tulsa, Oklahoma. VOC analyses were completed by IEA of Schaumburg, Illinois.

3.4 RESIDENTIAL WELL ABANDONMENT

The William's well has not been in service since the property was connected to the County water supply and, therefore, in accordance with the Illinois Water Well Code, the water well needed to be abandoned. Shortly after oil was discovered on the well, the resident authorized the PRP Group to abandon it. Approval was obtained from the Illinois Department of Public Health (IDPH)¹ to allow Fox Exploration, Inc. of Itasca, Illinois to abandon the well. This well was abandoned on August 7, 1997.

The abandonment of the well was performed in accordance with the requirements outlined in Section 920.120 of Part 920 of the Illinois Water Well Construction Code, Illinois Administrative Code and though consultation with Mr. Wayne Melichar of the DuPage County Health Department (DCHD). Mr. Melichar was also present for the abandonment of the well. Prior to abandonment, the depth to water in the well was measured at 6.43 feet btoc, and the well depth was measured at 92 feet bloc (or approximately 94.0 feet below ground surface (bgs)). The well was abandoned by filling the well annulus with pea gravel from the base of the well to a depth of 45.0 feet btoc. Bentonite chips were then placed on top of the pea gravel to a height of five feet btoc. The remaining well annulus was filled with concrete. The annular space of the well between the five-inch casing and the outer eight-inch casing was sealed with a cement/bentonite grout. All liquids generated from the well abandonment were containerized in a DOT approved 55-gallon steel drum and stored on Site. A copy of the completed water well sealing form is provided in Appendix A.

¹ Telephone conversation between Mr. Jerry Dalsin of the IDPH and Mr. Walter Pochron of CRA.

3.5 SOIL BORINGS

Two underground petroleum pipelines (Amoco Pipeline Company and Badger Pipeline Company) run parallel to the western property line of the Site. A series of ten soil borings (BH-1 through BH-9 and P-31) were drilled adjacent to these pipelines. The soil borings were advanced to determine if significant leakage has occurred from these pipelines. Figure 3.1 identifies the location of the soil borings and their proximity to the pipelines. Fox Exploration, Inc. of Itasca, Illinois was subcontracted to provide drilling services.

The soil borings were advanced using 3 ¾-inch hollow stem augers (HSA) in conjunction with split-spoon sampling. Soil samples were collected continuously until auger or split-spoon refusal was encountered, or to a depth of ten feet bgs. A portion of each split-spoon soil sample was placed in a zip-lock bag for headspace monitoring using a photoionization detector (PID). Soil samples were examined and classified by a CRA geologist according to the Unified Soil Classification System (USCS) to define subsurface stratigraphy. Soil cuttings were containerized on-Site in 55-gallon steel drums. One soil sample each from soil borings BH-2 and BH-8 was retained for potential VOC analysis.

Upon completion, the boreholes were backfilled with bentonite. Soil boring stratigraphic logs and head space monitoring results are presented in Appendix B.

3.6 PIEZOMETER INSTALLATIONS

Six new piezometers (P-25S, P-28, P-29, P-30, P-31, and P-32) were installed at the locations illustrated on Figure 3.2. The new piezometers were installed to further delineate the southern and western extent of the LNAPL. Boreholes for the piezometers were advanced using the protocols described in Section 3.5 of this report, and monitoring wells were constructed in accordance the procedures described in ERM's Field Sampling Plan, Addendum A Revision 4, June 27, 1994. Stratigraphic and instrumentation logs for the new

piezometers are presented in Appendix C, and construction details are summarized on Table 3.3.

Each of the new piezometers was developed following installation. Table 3.4 provides a summary of the measured piezometer development parameters.

3.7 GROUNDWATER SAMPLING

On September 10, 1997, groundwater samples were collected from existing monitoring wells MW-3S and MW-6S, and piezometers P-28, P-29, and P-30 were analyzed for VOCs. These samples were collected to evaluate the potential presence of a dissolved VOC plume. Monitoring wells were purged and sampled using disposable polyethylene bailers and a new section of nylon rope. Five well volumes were purged from each monitoring well/piezometer prior to sampling. Table 3.5 provides a summary of the measured monitoring well/piezometer purging parameters. VOC analyses were completed by IEA of Schaumburg, Illinois.

3.8 PIEZOMETER MODIFICATION

The protective cover on piezometer P25 was changed from an above-grade protective casing to a flush mount roadway box at the request of Mr. Pete Tameling, the owner of the property on which the piezometer is located.

3.9 SURVEYING

The location and elevations of the newly installed soil borings and piezometers and the recently modified piezometer P25 were surveyed on September 19, 1997. Advanced Surveying & Mapping, Inc. of Batavia, Illinois was subcontracted to provide surveying services.

3.10 LNAPL RECOVERY TESTS

LNAPL recovery tests were conducted on monitoring well G106L and piezometers P19 and P20. The purpose of the LNAPL recovery tests was to determine the actual thickness of the LNAPL in the subsurface to assist with estimating the volume of LNAPL and the selection of a remedy. An LNAPL test was also attempted on monitoring well MW-5S, but equipment problems prevented the completion of this test. LNAPL recovery tests were performed by purging LNAPL/water from the monitoring well/piezometer with a disposable polyethylene bailer. The recovery of LNAPL and water into the monitoring well/piezometer was then monitored over time. Monitoring was performed using a Keck oil/water interface meter.

3.11 RIVER BANK INSPECTION

The northern bank of the Des Plaines River was inspected on September 19, 1997. The Des Plaines River is located approximately 500 feet south of Jeans Road. The river bank was inspected and no visual signs of LNAPLs discharging into the river were noted. The portion of the river inspected extended from monitoring well nest MW-3S and MW-3D westward to the Route 83 bridge.

4.0 FIELD INVESTIGATION RESULTS

4.1 LNAPL AND WATER LEVEL MONITORING RESULTS

The updated extent of the LNAPL layer is shown on Figure 4.1. The LNAPL area covers approximately 67,000 sq. feet and is 70% larger than previously estimated by ERM.

The water level data collected during the September 10 and 25, 1997 monitoring events were used to construct the groundwater contour maps presented on Figures 4.2 and 4.3, respectively. These figures illustrate a groundwater flow direction towards the south and southeast. This groundwater flow direction is consistent with the groundwater flow direction identified by ERM during their LNAPL investigations (see Appendix D for ERM groundwater contour figures). As Figures 4.2 and 4.3 illustrate, the direction of groundwater flow is not directly toward the Des Plaines River, as would be expected. The flow of shallow groundwater beneath the Site and the surrounding area appears to be influenced by the following physical features:

- 1. the presence of a geomembrane which lines the excavations where soil remediation was performed (see cross-hatched are on Figure 1.2);
- 2. an area of standing water located to the west of P08; and
- 3. the presence of standing water on Mr. Tameling's property located between P-29 and MW-6S.

The two areas of standing water appear to be acting as groundwater recharge areas and the geomembrane appears to be acting as a barrier to groundwater flow.

Table 4.1 presents a summary of historic groundwater elevation data for shallow monitoring wells and piezometers where LNAPLs have not been detected. Figure 4.4 presents a hydrograph of measured

4.3 LNAPL THICKNESS

It is widely accepted that the thickness of LNAPI. measured in a well is not a true indication of the actual thickness of the free phase layer within the formation. (Ballestero, et.al., 1994; Farr, et.al., 1990; and others). These studies have shown that the difference between the apparent and actual LNAPL thickness is attributed to the capillary fringe and several other factors. When the LNAPL enters the well from above the water table it will depress the water level within the well due to the difference in specific gravity between water and the LNAPL. Under static conditions, the LNAPL will rise to a height corresponding to the top of the LNAPL free surface/oil capillary fringe within the formation.

The LNAPL thickness in the well is, therefore, almost always greater than the actual thickness of LNAPL in the formation. The thickness of the LNAPL measured in a well (under static conditions) is directly affected by the specific gravity of the oil and by the capillary pressures within the formation surrounding the specific well. The capillary pressures are directly related to the grain size of the formation (i.e. the finer the grain size the greater the capillary pressures). The soils beneath the Lenz Oil Site consist of mainly silts and clays which result in a relatively thick capacity fringe beneath the Site. Because the construction of the well disrupts the capillary fringe in the formation, it creates a greater thickness of LNAPL in the well (Ballestero, et al, 1994). Therefore, the apparent LNAPL thickness measured in monitoring wells/piezometers is approximately equal to the sum of the actual LNAPL thickness, the capillary fringe thickness and the amount of water level depression due to the differences in the specific gravity.

The thickness of LNAPL measured in any monitoring well (even under static conditions) is complex and dependent upon location-specific factors such as specific gravity and viscosity of the LNAPL, grain size of the formation, well construction techniques, and the true thickness of the LNAPL outside the well (i.e. the proximity to the source release area). Figure 4.5 presents some simple variations to the above conditions and their impact on the LNAPL

thickness Figure 4.6 presents a simplified scenario where the water level rises and drops in the presence of a LNAPL layer.

CRA believes that the variation in the apparent LNAPL thickness observed in the monitoring wells and piezometers is related principally to water table fluctuations. For example, the average variation of the water table at the Lenz Oil Site, based upon seven year, plus history, is on the order of 3.5 feet. There are individual well variations of almost seven feet in a few locations.

During ERM's LNAPL investigations, the water table was moderately high and measurable levels of LNAPLs were not detected in piezometers P24S, P24, and P25. Some time during the three year period between ERMs investigation and CRA's supplemental investigation, the water table at the Site apparently dropped to a level where LNAPLs accumulated within the screened intervals of piezometers associated with water table fluctuations and not lateral migration is P24S, P24, and P25. As the water table level rose, the LNAPL drained out P24S but remained trapped in the casing of piezometers P24 and P25. Another example of the variability of LNAPL thicknesses in monitoring wells and piezometers associated with water table fluctuations and not lateral migration is the measured LNAPL thickness in piezometer P01. Piezometer P01 is located within the former soil excavation boundary and represents a isolated island of LNAPL which was left in place following IEPA's on-Site remediation. During ERM's 1994 investigation, the average LNAPL thickness measured at P01 was 0.15 feet. However, over three feet of LNAPL was measured in P01 during CRA's supplemental investigation, even though an additional source of LNAPL apparently had been removed and the location had been isolated. The LNAPL in P01 appears to have been trapped in the casing similar to which occurred in piezometers P24 and P25.

As a result of the significant variability of the water table elevation at the Lenz Oil Site, the free phase LNAPL layer has moved vertically within the formations. This vertical migration has resulted in the entrapment of LNAPL within the vadose zone, within the capillary fringe and within the saturated zone as discussed previously. The combined thickness of the zones

where LNAPL entrapment occurs is referred to commonly as the 'smear zone' (see Figure 4.7). CRA estimates the smear zone averages 3.5 feet across the Site. This estimate is based upon both historical and recent water level measurements and based upon a review of the boring logs from monitoring wells and piezometers located within the LNAPL layer. The 3.5 feet value is an average, consequently in some cases the smear zone may be thinner due to a smaller water table fluctuation or due to a larger average grain size of the surrounding deposits at that location. The smear zone is likely to be larger at locations where the water table rises and falls over a larger distance or were the formation grain size is smaller.

4.4 LNAPL LATERAL MIGRATION.

The LNAPL thickness and detection measurements made to date indicate that the LNAPL layer has a configuration close to that depicted on figure 4.1. This configuration covers approximately 67,000 square feet and is approximately 70% larger than the area estimated in the past by ERM during the 1994 LNAPL investigation. The main reason the LNAPL area appears to be larger in size relates to more recent detection of LNAPLs in the southern piezometers; P24 and P25 and the observation of LNAPL in the William's well. As mentioned previously, these observations are not solely due to lateral movement of the LNAPL layer, but rather the vertical movement of a thin layer which, under certain conditions does not enter the screened interval of the well.

The LNAPL layer as defined in Figure 4.1 is considered to be relatively stable and does not appear to be migrating significantly based upon data and observations obtained over a seven year period at the Site. This conclusion is supported by the following:

1) The detection of LNAPL in the piezometers at the estimated leading edge of the LNAPLs (P24 and P25) has been infrequent and only occurs during periods of an extremely low water table. These characteristics are commonly found at the leading edge of an LNAPL release. These

conditions have not changed over the last three years (since the piezometers were installed) which again indicate moderately stable conditions.

- 2) Groundwater samples collected from piezometers recently installed downgradient of the leading edge of the LNAPL layer P- 28,29 and 30) did not detect any VOCs. Even with elevated concentrations of VOCs detected in the LNAP' samples, VOCs were not detected in the dissolved phase within the shallow water bearing unit. As explained in Section 4.4, it is common for natural attenuation processes to occur at the leading edges of LNAPL layer which reduce the concentrations of the VOCs dissolved in the groundwater. For stable and older, well established layers, these processes often reduced the dissolved fractions to non-detectable concentrations as is evident at the Lenz Oil Site.
- There is no evidence of soil staining or a smear zone in the recently installed piezometers (P-28, 29, 30, 31, and 32) located downgradient of the leading edge of the LNAPL layer which would indicate that a LNAPL layer has traveled to those locations in the three years since the other piezometers (P24 and 25) were installed.
- 4) The tanks, drums, and impoundments on Site and much of the LNAPL on Site was removed in the late 1980s by the IEPA, and there are no known additional LNAPL sources which would act as a significant driving force to lateral migration.

In summary, when consideration is given to all the Site data, the LNAPL layer at the Lenz Oil Site should be considered stable, with little to no lateral migration.

4.5 LNAPL SAMPLING RESULTS

Hydrocarbon Finger-Printing Results

The results of laboratory analysis and hydrocarbon finger-printing of the collected LNAPL samples is presented in Appendix E. An interpretation of the LNAPL hydrocarbon finger-printing analysis by Gene W. Schmidt of GW/S Environmental Consulting in Tulsa, Oklahoma is also provided in Appendix E. The interpretation of the finger-printing analysis indicated that all of the LNAPL samples appeared to be a mixture of diesel fuel, motor oil, and at one location included gasoline. However, interpretation of the ages of the LNAPL samples varied greatly (from 2 to 20 years). These analyses suggest that the LNAPL detected in the residential well is not related to the Lenz Site. However, no source other than Lenz has been found to date.

VOC Results

The LNAPL VOC analytical results are summarized on Table 4.2 and reproduced in Appendix F. The VOC analytical results from the three LNAPL samples collected varied greatly in concentrations and constituents. The VOC results are as follows:

<u>William's Well:</u> The total VOC concentration in the LNAPL sample collected from the residential well was 10.5 ppm. Only two VOCs, acetone and xylenes were detected.

<u>MW-5S:</u> The total VOC concentration in the LNAPL sample collected from monitoring well MW-5S was 35.9 ppm. Only two VOCs, ethylbenzene and xylenes, were detected.

<u>P19</u>: The total VOC concentration in the LNAPL sample collected from piezometer P19 was 12,402 ppm. Twelve VOCs, consisting of chloroethane, 1,1-dichloroethene, 1,1-

1,1,1-trichloroethane, 1,2-dichloropropane, benzene tetrachloroethene toluene, chlorobenzene, ethylbenzene, and xylenes, were detected

A data validation memo validating the LNAPI-VOC analytical results is presented in Appendix G.

4.6 SOIL ANALYTICAL RESULTS

As discussed in Section 3.5, soil samples were retained from soil borings BH-2 and BH-8 for VOC analysis. Table 4.3 provides a summary of the VOCs detected in the soil samples collected during the soil boring program. The presented soil analytical data, headspace monitoring results, and visual observations show no evidence of a significant release from either of the pipelines which would have effected the existing LNAPL layer. However, these data do indicate that petroleum related compounds are present in the shallow soils. Minor soil staining was observed in soil boring BH-2. Conversations with Amoco Pipeline personnel indicated a Valve House had been located near BH-2. During the removal of this Valve House, stained soils were observed by Amoco personnel. Due to the lack of soil staining in the remaining soil borings, groundwater results from P-30, and the presence of the Valve House, it is CRA's belief that this soil staining is not the result of migration of the Lenz Oil LNAPL layer.

IEA's analytical report is reproduced in Appendix F and data validation memos are presented in Appendix G.

4.7 GROUNDWATER ANALYTICAL RESULTS

Dissolved VOCs were not detected at concentrations above the detection limits in the groundwater samples collected from existing monitoring wells MW-3S and MW-6S and piezometers P-28, P-29, and P-30. These data demonstrate that a VOC plume is not present in the shallow groundwater to the south of the LNAPL area (see Figure 4.8). IEA's analytical

report is reproduced in Appendix F and data validation memos are presented in Appendix G.

Dissolved VOCs also were not detected at concentrations above the detection limits in the groundwater samples collected from existing monitoring wells MW-3S and MW-6S during the RI investigation (see figures in Appendix H which summarize the shallow groundwater analytical results from the RI). These data demonstrate that a VOC plume is not, and is unlikely to be, present in the shallow groundwater to the south of the LNAPL area.

The lack of detected VOCs on the downgradient (leading edge) of the LNAPL layer and the relatively stable nature of the LNAPL layer (refer to Section 4.2) suggests that the chlorinated aliphatic hydrocarbons (CAHs) are being transformed into innocuous products as a result of biological activity. The CAHs which are present at detectable concentrations within the LNAPL phase, are not detected directly downgradient of the LNAPL in the dissolved groundwater phase. Part of this may be due to hydrophobic nature of the CAHs in the presence of a LNAPL of organic material such as petroleum hydrocarbons. The CAHs have a tendency to stay within the organic matter within the LNAPL. layer and are not preferentially dissolved into the groundwater. Another possibility for the lack of CAHs in groundwater is likely a result of their transformation by cometabolic reactions or reduction/oxidation reactions in the presence of the petroleum hydrocarbons in the LNAPL (Montoux, et. al, 1996). Both these reactions require the petroleum hydrocarbon LNAPL layer to be fairly stable, such as is the case at the Lenz Oil Site. These data indicate natural attentuation can be an effective remedial option at the Site with respect to dissolved VOCs.

Recent studies (Murray and Richardson, 1993; Vogel, 1994; McCarty and Semprini, 1994) have indicated that under aerobic conditions (as would be expected for the shallow groundwater in this area of the Site) CAHs are subject to cometabolic degradation. In this environment the CAHs are indirectly transformed by bacteria as they use the petroleum hydrocarbons (BTEX) in the LNAPL as their energy source (Wiedemeir, et al., 1996).

Another source of the transformation of dissolved CAHs in the presence of a LNAPL layer are the reduction/oxidation reactions in the groundwater. These reactions result from elevated organic substrate (e.g. a petroleum hydrocarbon plume). In this case, there is now a surplus of electron donors which increases the reducing potential of the groundwater and the CAHs are dehalogenated to innocuous transformation products (Montoux, 1996).

Either mechanism described above will result in low to non-detectable concentrations of CAHs dissolved in groundwater at locations just downgradient of a LNAPL layer. Given the known characteristics of the Lenz Oil Site and findings from similar Sites, these transformation mechanisms may be occurring on the south end of the LNAPL layer.

4.8 LNAPL RECOVERY TEST RESULTS

The data obtained from the LNAPL recovery tests performed on P19, P20 and G106L were assessed using the methods described in Gruszczenski (1987). This method of evaluation is commonly used to aitempt to determine the thickness of LNAPL in the actual formation versus the apparent thickness of LNAPL measured in a well. The results of the LNAPL recovery tests are summarized on Table 4.4. These data indicate a 64 to 97 percent difference between the apparent and estimated LNAPL thickness calculated using the Gruszczenski method. Calculations estimating the actual LNAPL thickness ranged from 0.16 feet at G106L to 1.6 feet at P19². These data indicate that the actual thickness of LNAPL under the Site is only a few tenths of a foot in thickness across most of the Site, with the apparent exception of the vicinity of P19.

² The procedures and methods of estimating actual LNAPL thickness provided by Gruszczenski (1987) are subject to assumptions and underlying hydrogeologic conditions which are not satisfied at this Site. However, this method provides a qualitative approach to better understand LNAPL thickness in the formation.

Tables and graphs from the LNAPL recovery tests are presented in Appendix I.

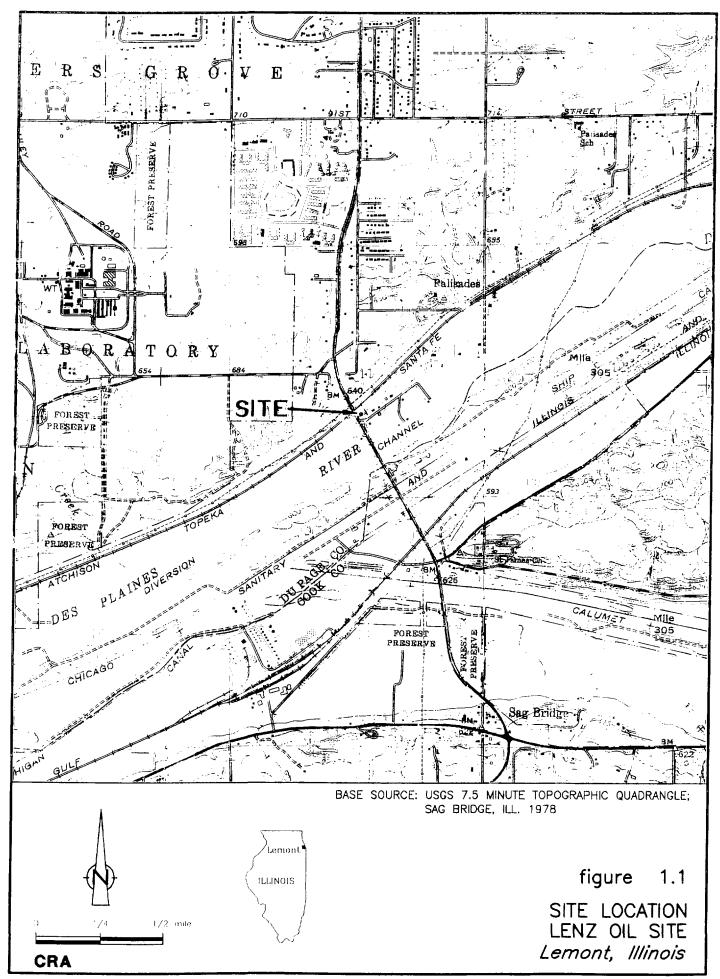
REFERENCES

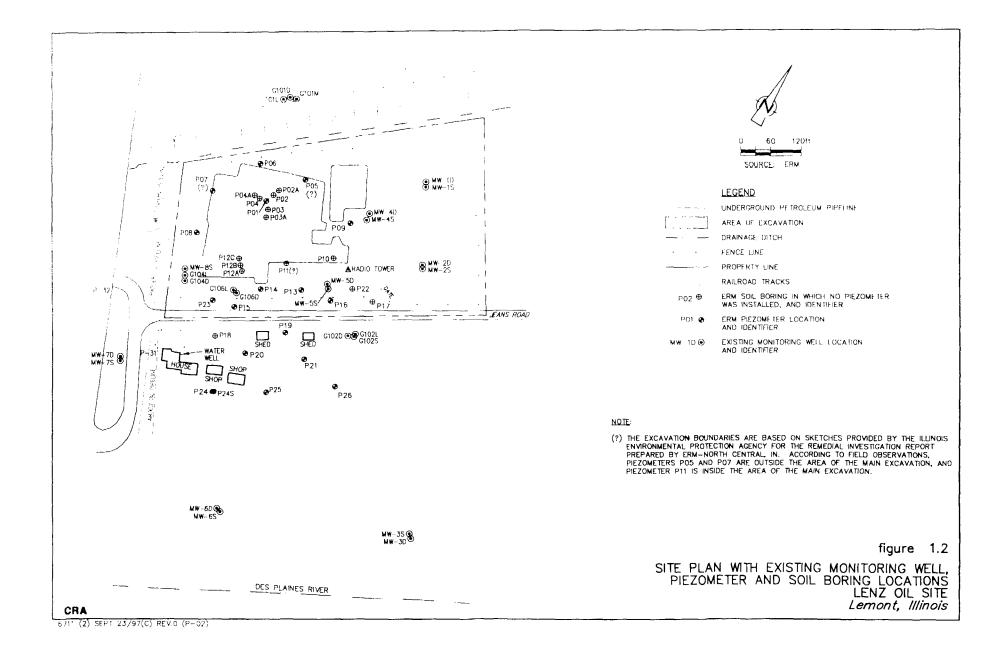
Ballester T.P., Fiedler, F.R., and Kinner, N.E., 1990. An Investigation of the Relationship Between Actual and Apparent Gasoline Thickness in a Uniform Sand Aquifer. Ground Water, Volume 32, No. 5, pp. 708-718.

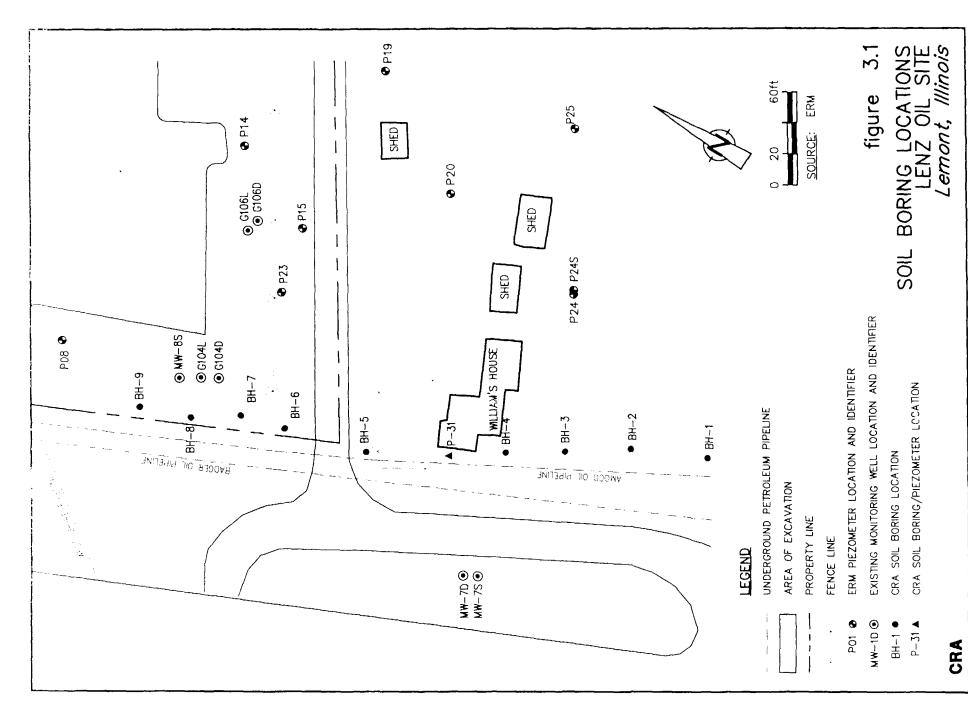
Farr, A.M.; Houghtalen, R.J.; and McWhorter. 1990, Volume Estimation of Light Non Aqueous Phase Liquids in Porous Media. Ground Water, Volume 28, No. 1, pp. 48-56.

Graszczenslo. T.S., 1987. Determination of a Realistic Estimate of the Actual Formation Product Using Monitoring Wells, a Field Bailout Test. In Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration. NWWA, Houston, Texas, November 1996.

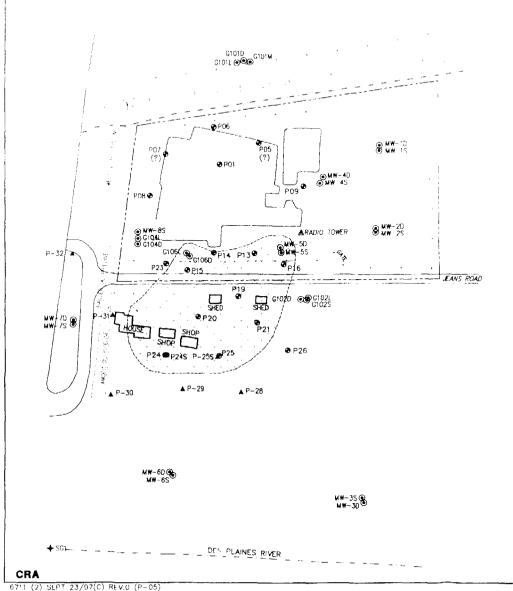
Kemblowski, M.W. and Chiang, C.Y., 1990. Hydrocarbon Thickness Fluctuations in Monitoring Wells. Ground Water, Volume 28, No. 2, pp. 244-252.

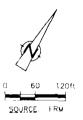

McCarty, P.L., and L. Semprini. 1994. Ground-water treatment for chlorinated solvents, In Norris, R.D., R.E. Hinchee, R. Brown, P.L. McCarty, L. Semprini, J.T. Wilson, D.H. Kampbell, M. Reinhard, E.J. Bouwer, R.C. Borden, T.M. Vogel, J.M. Thomas, and C.H. Ward, editors. Handbook of Bioremediation. Boca Raton, FL: Lewis Publishers.


Moutoux, D.E., Benson, L.A., Swanson, M.A., Wiedemeir, T. H., Lenhart, J., Wilson, J.T., and Hansen, J.E. Estimating the Changing Rate of Anaerobic Dechlorination of Chlorinated Aliphatic Hydrocarbons in the Presence of Petroleum Hydrocarbons. The Proceedings of the 1996 Petroleum Hydrocarbons & Organic Chemical in Ground Water Prevention, Detection, and Remediation Conference. Houston, Texas, November 1996.


Murray, W.D. and M. Richardson. 1993. Progress toward the biological treatment of C₁ and C₂ halogenated hydrocarbons. Critical Reviews in Environmental Science and Technology 23 (3): 195-217.

Vogel, T.M. 1994. Natural bioremediation of chlorinated solvents. In Norris, R.D., R.E. Hinchee, R. Brown, P.L. McCarty, L. Semprini, J.T. Wilson, D.H. Kampbell, M. Reinhard, E.J. Bouwer, , R.C. Borden, T.M. Vogel, J.M. Thomas, and C.H. Ward, editors. Handbook of Bioremediation. Boca Raton, FL: Lewis Publishers.


Wiedemeir, T.H.: Wilson, J.T., Kampbell, D., Hansen, J.E., and Huss, P. 1996. Technical Protocol for Evaluating the Natural Attenuation of Chlorinated Ethenes in Groundwater. The Proceedings of the 1996 Petroleum Hydrocarbons & Organic Chemical in Ground Water Prevention, Detection, and Remediation Conference. Houston, Texas, November 1996.



6711 (2) SEPT 23/97(C) REV.0 (P-03)

LEGEND

UNDERGROUND PETROLLUM PIPELINE

ESTIMATED LIMITS OF ENAPL

AREA OF EXCAVATION

DRAINAGE DITCH

FENCE LINE

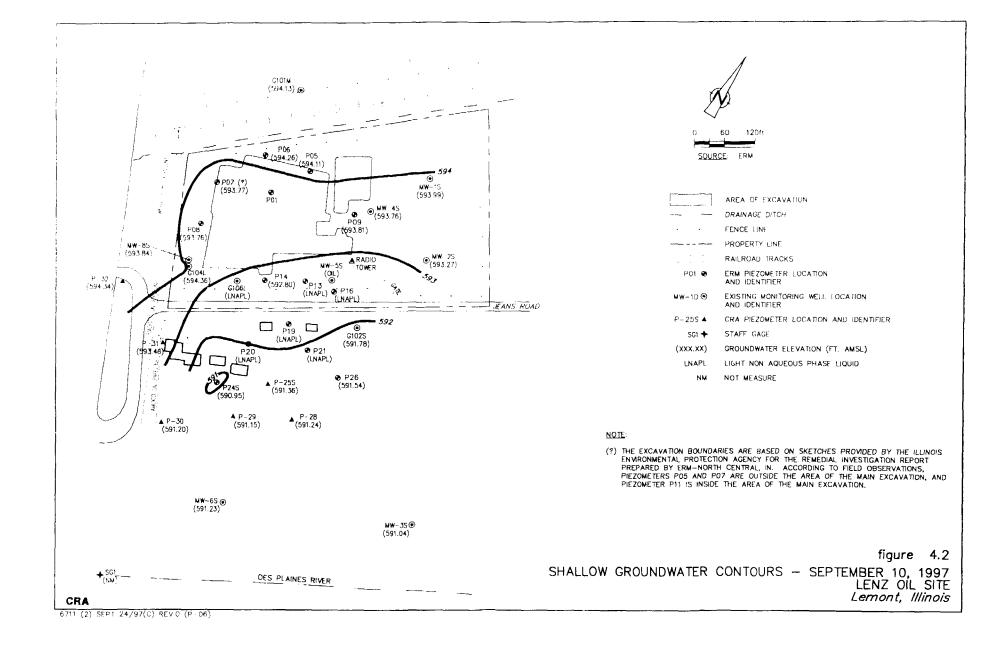
PROPERTY LINE

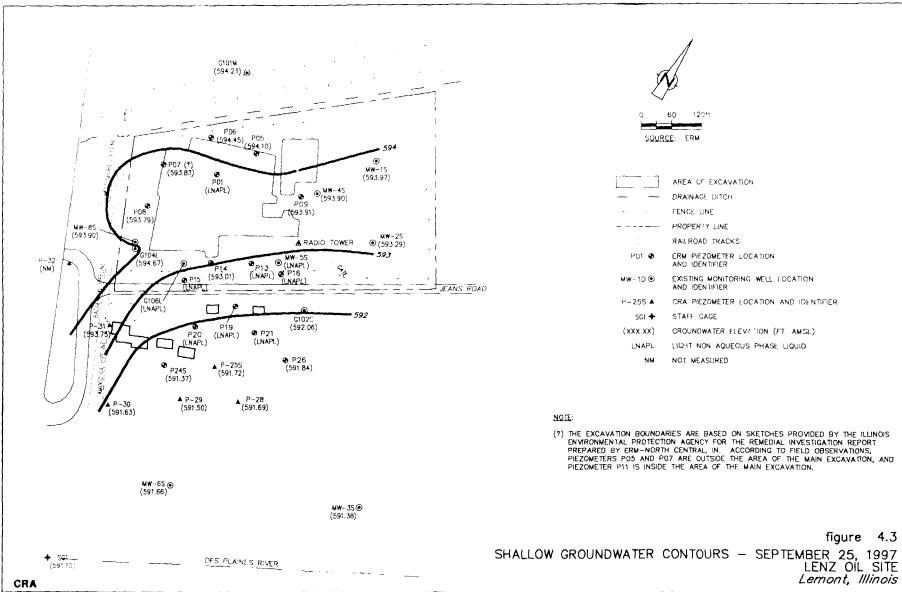
RAILROAD TRACKS

ERM PIFZOMETER LOCATION AND IDENTIFIER P01 @

MW-1D ⊚ EXISTING MONITORING WELL LOCATION

AND IDENTIFIER


PZ-25S ▲ CRA PIEZOMETER LOCATION AND IDENTIFIER


STAFF GAGE

NOTE:

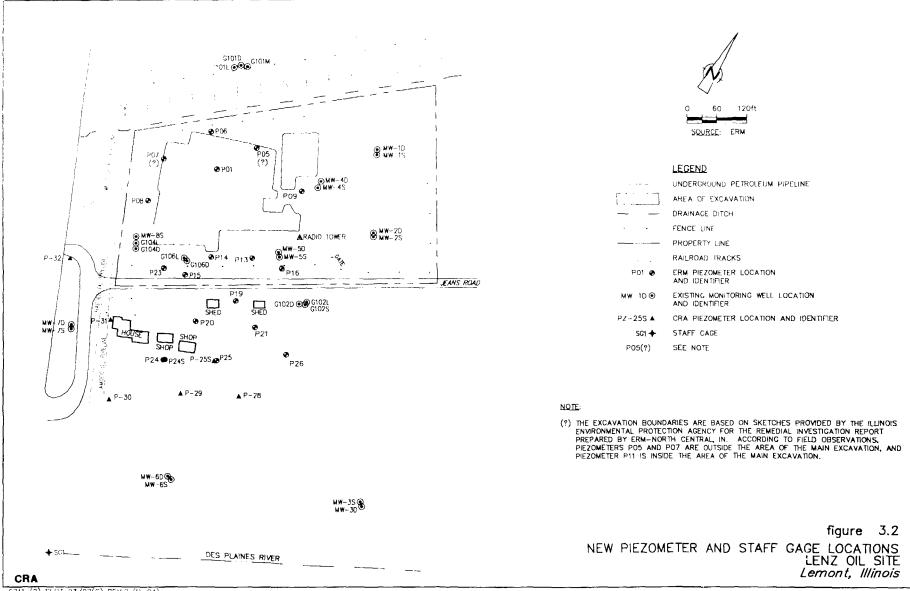
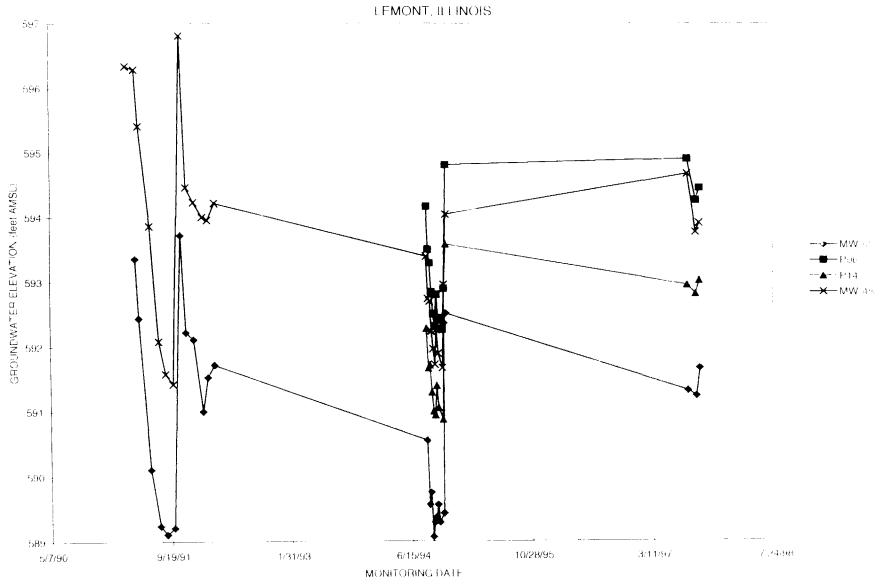
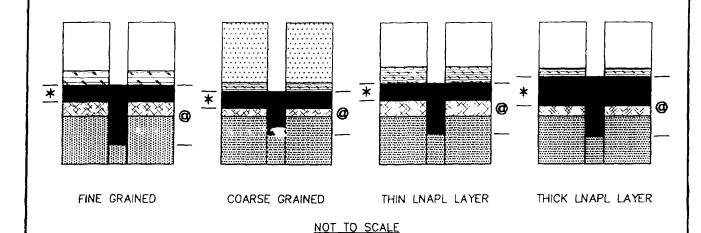
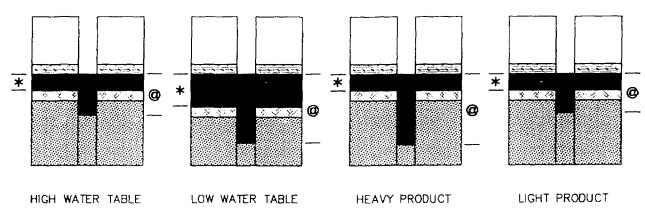

(?) THE EXCAVATION BOUNDARIES ARE BASED ON SKETCHES PROVIDED BY THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY FOR THE REMEDIAL INVESTIGATION REPORT PREPARED BY ERM—NORTH CENTRAL, IN. ACCORDING TO FIELD OBSERVATIONS, PIEZOMETERS POS AND POT ARE OUTSIDE THE AREA OF THE MAIN EXCAVATION. AND PIEZOMETER P11 IS INSIDE THE AREA OF THE MAIN EXCAVATION.

figure 4.1 LNAPL LIMITS LENZ OIL SITE Lemont, Illinois



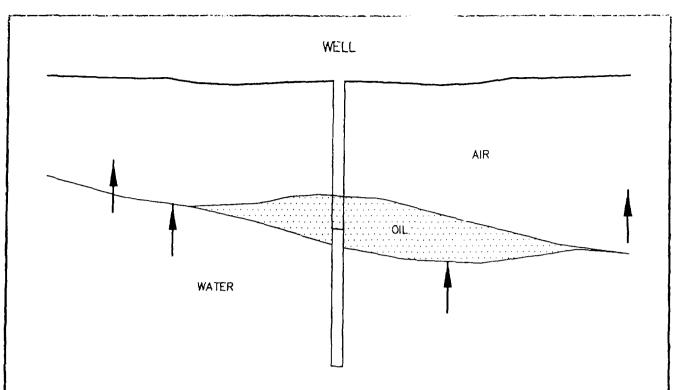

6711 (2) SEPT 26/97(C) REV.O (P-08)



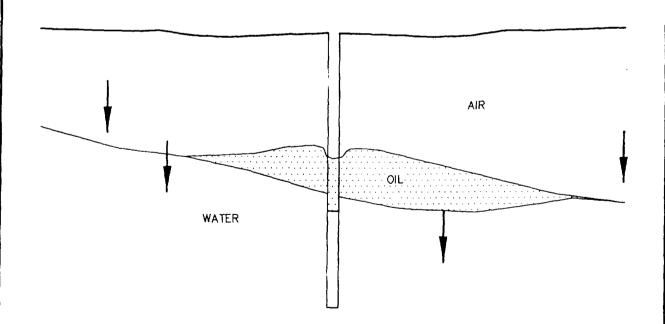
6711 (2) SEPT 23/97(C) REV.D (P-04)

FIGURE 4.4
HYDROGRAPH OF GOUNDWATER ELEVATIONS
LENZ OIL SITE

NOT TO SCALE


LEGEND

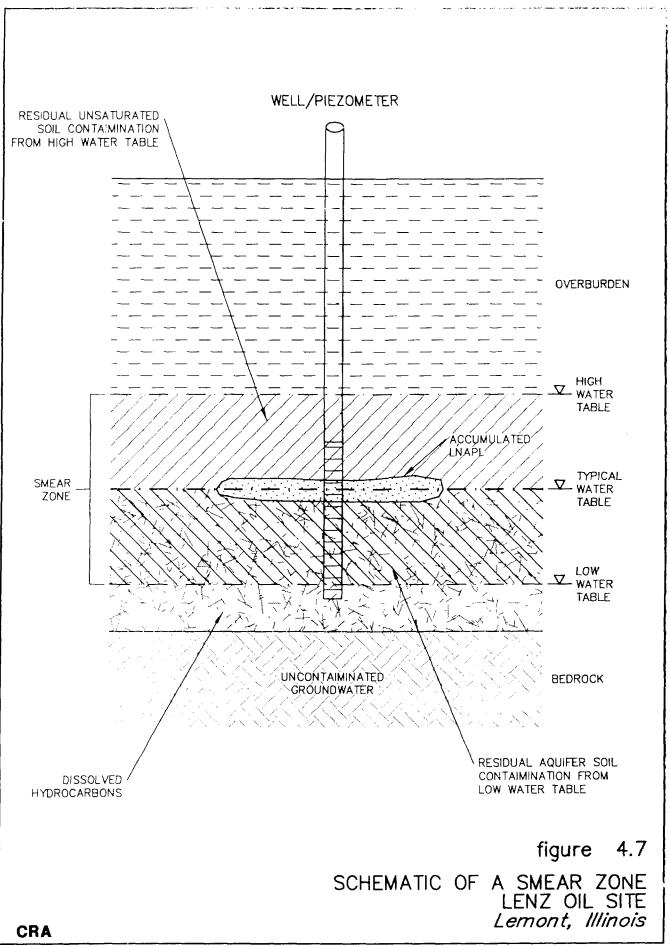
- * ACTUAL LNAPL THICKNESS
- @ APPARENT LNAPL THICKNESS

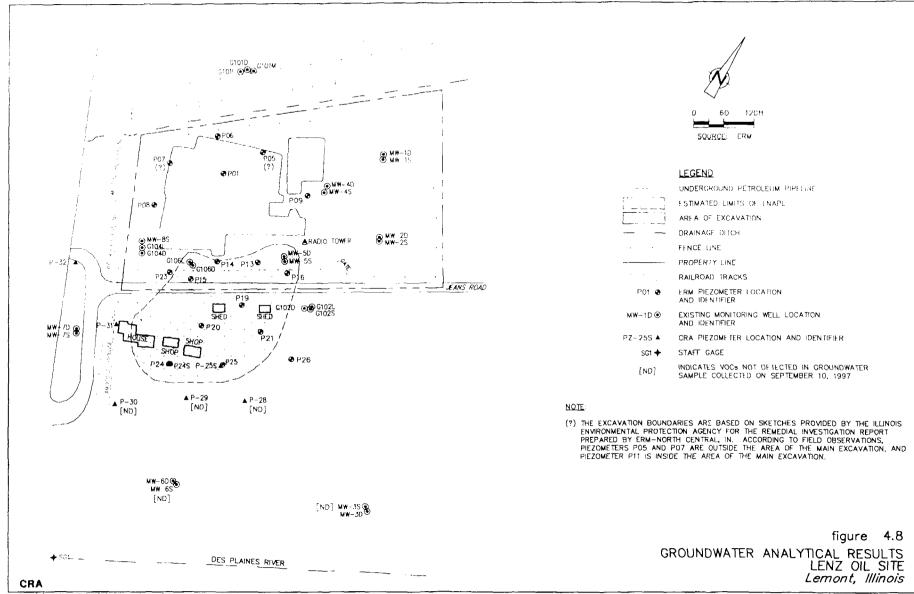

figure 4.5

SCHEMATIC OF ACTUAL VS. APPARENT LNAPL THICKNESS IN A WELL AND ADJACENT FORMATION LENZ OIL SITE Lemont, Illinois

CRA

HYDROCABON THICKNESS DECREASE FOR RISING INTERFACE NO SCALE


HYDROCABON THICKNESS INCREASE FOR FALLING INTERFACE NO SCALE


figure 4.6

EFFECT OF WATER TABLE ON LNAPL THICKNESS LENZ OIL SITE Lemont, Illinois

CRA

SOURCE: KEMBLOSKI, M.W.; CHIANG, C.Y. (1990)

6711 (2) SEP" 26/97(C) REV 0 (P-0/)

TABLE 3.1

WATER LEVEL AND LNAPL MEASUREMENTS JULY 31, 1997 LENZ OIL SITE LEMONT, ILLINOIS

Monitoring Location	Depth To LNAPL (feet btoc)	Depth to Groundwater (feet btoc)	Apparent LNAPL Thickness (feet)
MW-5S	10.76	11.60	0.84
P14	ND	11.26	0.00
P19	13.09	16.33	3.24
P24S	ND	5.56	0.00
P25	7.44	8.08	0.64
P26	ND	7.48	0.00
William's Well	6.55	7.14	0.59

Notes:

btoc - below top of casing

ND - none detected

WATER LEVEL AND LNAPL MEASUREMENTS LENZ OIL SITE LEMONT, ILLINOIS

TABLE 3.2

			AUGUS'	Г 7, 1997		SEPTEMBER 10, 1997				SEPTEMBER 23, 1997				
					Apparent				Apparent				Apparent	
Monitoring Location	Reference Elevation (feet AMSL) [†]	Total Depth feet btoc) ²	Depth to Groundwater (feet bloc)	Depth To LNAPL (feet bloc)	LNAPL Thickness (feet)	Groundwater Elevation (feet AMSL)	Depth to Groundwater (feet bloc)	Depth To UNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation (feet AMSL)	Depth to Groundwater (feet bloc)	Depth In LNAPL (feet bloc)	INAPL Thickness (teet)	Grotomats arrest The attention to the AMS.
					•		·	,	•		·	•		
MW-1S	602.88	20.90	8.7ь	ND'	0.00	594.12	8 89	ND	0.00	593. 9 9	8 41	ND	0 (5)	
MW-ID	602 14	48.00	9.33	ND	0.00	592.81	9.25	ND	0.00	592.89	9.18	ND	(1,0),1	+ 2.00
MW-2S	603.23	14.80	9.79	ND	0.00	593.44	9.96	ND	0.00	593.27	9,94	ND	0.00	
MW-2D	602 66	45.90	10.86	ND	0.00	591.80	10.62	ND	0.00	592.04	10.43	ND	6.00	
MW-35	597. 9 9	21.30	7.35	ND	0.00	590.64	6.95	ND	0.00	591.04	b bl	ND	0.00	
MW-3D	597.90	47.40	6.76	ND	0.00	591.14	6.54	ND	0.00	591.36	6 29	ND	ઇ છે	,
MW-45	603.35	21.60	8.68	ND	0.00	594.67	9.59	ND	0.00	593.76	9.45	ND	0.00	
MW-4D	602.83	47.90	11.31	ND	0.00	591.52	11.05	ND	0.00	591.78	10.85	ND	0.00	
MW-5S	603 92	NM ⁴	11.17	10.26	0.91	NA	11.20	10 51 5	0.69	NA	11 08	10.36	0.72	
MW-5D	n03 94	49.10	12.46	ND	0.00	591.48	12.22	ND	0.00	591.72	11.99	ND	0.00	Esq. 45
MW-6S	594.04	16.50	2.73	ND	0.00	591 31	2 81	ND	0.00	591 23	2.38	ND	0.00	* () () ()
MW-6D	595.98	46.20	5.16	ND	0.00	590.82	4 88	ND	0.00	591.10	4.56	ND	0.00	
MW-7S	608.29	34.80	17.30	TRACE	TRACE	NA	17.02	ND	0.00	591.27	16.74	ND	$\phi(\phi)$	4
MW-7D	608 01	57.20	16.92	ND	0.00	591.09	16.63	ND	0.00	591.38	16.36	ND	0.00	
MW-85	602.48	23 70	8 70	ND	0.00	593.78	8 64	ND	0.00	593 84	8.58	ND	(0,00)	F 5.3
ت-101L	611.25	34.20	17.09	ND	0.00	594.16	17.17	ND	0.00	594 08	17 (8)	ND	0.00	
G-101M	612.05	23.60	17.82	ND	0.00	594-23	17 92	ND	0.00	594-13	17.82	ND	×2.103	
(1011-ت	610.98	40.95	17.13	ND	0.00	593.85	17 09	ND	0.00	593.89	16.99	ND	13.841	4
G-102S	601.82	17.30	10.04	ND	0.00	591.78	10.04	ND	0.00	591.78	4.76	ND	+1.00	
G-102L	601.63	16.65	9.84	ND	0.00	591.79	9.85	ND	0.00	591.78	9.58	ND	2.043	
G-102D	602.41	21.48	10.82	ND	0.00	591.59	10.81	ИD	0.00	591.60	10/52	ND	1100	
G-104L	602 60	10 60	5.48	ND	0.00	597.12	8.24	ND	0.00	594.3n	- 43	ND	DO:	
G-104D	602.38	16.40	8.76	ND	0.00	593.62	8 69	ND	0.00	593.69	8 65	ND	J,(h)	
G-106L	603 08	NM	12.56	10.11	2.45	NA	11.15	10 26 5	0.89	NA	10.62	19.13	0.49	
G-106DR	603 31	47.35	12.02	ND	0.00	591.29	11.73	ND	0.00	591.58	11.47	ND	0.00	:
P01	603 03	NM	11 90	8.47	3.43	NA	11.93	8.65	3 28	NA	11 Tn	8 5~	3.19	
1'05	602 84	13 60	8.08	ND	0.00	594.76	8.73	ND	0.00	594-11	8.74	ND	0.00	
PO6	603 65	12.35	8 75	ND	0.00	594.90	9.39	ND	0.00	594.26	9.20	ND	(1 (3))	* * * * * * * * * * * * * * * * * * * *
P07	600.55	13.50	6 69	ND	0.00	593.86	6.78	ND	0.00	593.77	6.72	ND	0.00	÷ ₹
P08	600.81	11.90	6.96	ND	0.00	593.85	7.05	ND	0.00	593. 76	7.02	ND	(r,c)	
P09	603.62	15.60	9.61	ND	0.00	594 01	9.81	ND	0.00	593 81	9.71	ND	() (c)	
F13	603.78	15.90	10.14	ND	0.00	593 64	10.46	TRACE	IRAGE	NA	1019	TRACE	TF W r	
P14	603 69	17.70	10.75	ND	0.00	592 94	10.89	ND	0.00	592.80	10.58	ND	(I Oil	
P15	ού1 34	NM	9,42	9.38	0.04	NA	Could not locate			NA^{t}	9 20	9.21	2	

CRA 6711 (2)

WATER LEVEL AND LNAPL MEASUREMENTS LENZ OIL SITE LEMONT, ILLINOIS

				AUGUS	Т 7, 1997			SEPTEMBI	CR 10, 1997			SEPTEMB	BER 25, 1997	
				·	Apparent				Apparent				Apparent	
Monitoring	Reference Elevation	Total Depth	Depth to Groundwater	Depth To LNAPL	LNAPL Thickness	Groundwater Elevation	Depth to Groundwater	Depth To I NAPL	LNAPL Thickness	Groundwater Elevation	Depth to Groundicater	Depth To I NAPL	LNAPL Thickness	Granida 100 Heta ya
Location	(feet AMSL) ¹	feet btoci :	(feet btoc)	(feet btoc)	(feet)	(feet AMSL)	(feet btoc)	(feet btoc)	(feet)	(feet AMSL)	(feet bloc)	Geet bloci	(feet)	$(\partial_{\mathbf{x}}g_{ij}, \nabla g_{ij})$
P16	604-20	21.30	11.53	TRACE	TRACE	NA	11.61	11.6	ų 01	NA	11 39	TRALE	IRACE	
P19	604.18	NM	14.56	12.56	2.00	NA	16.55	12.07	4.48	NA	16 25	11.78	4.47	• • •
120	599.29	NM	12.31	7.44	4.87	NA	10.01	7 54	2.47	NA	10 64	7.09	3.55	1 1
P21	601.03	NM	10.81	9.58	1.23	NA	12.28	9 25	3.03	NA	12.23	8.91	3.32	
P23	600.87	Coul	d not locate piezo	ometer		NA	Could not locate	piezometer		NA	Could not locat	e piezometer		
1'24	596 28	NM	6.45	5.13	1 32	NA	5 27	5.1 7	0.17	NA	4.94	4.76	0.18	
P24S	596.18	12.80	4.75	TRACE	TRACE	NA	5.23	ND	0.00	590 95	4.81	ND	0.00	**
P25	597 95/595.57 *	NM	7.85	6 49	1.36	NA	5.31	5.03	0.28	NA	4.84	4.57	0.27	
P-25S	596.21	12.25	NIª	NA	NA	NA	4.85	ND	0.00	591.36	4 49	ND	0.00	246
P-26	598.23	20.50	6.68	ND	0.00	591.55	6.69	ND	0.00	591.54	6.39	ND	0.00	54161
1'-28	595 57	12.28	NI"	NA	NA	NA	4.33	ND	0.00	591.24	3.88	ND	0.00	591 60
P-29	597.06	14.72	NI	NΑ	NA	NA	5.91	ND	0.00	591.15	5.56	ND	0.00	- 41 25
$P(\mathcal{D})$	598 81	15.32	NI	NA	NA	NA	7.61	ND	0.00	591.20	7.18	NL	(±1) ()	101 %
P-31	600.57	12.34	NI	NA	NA	NΛ	7.11	ND	0.00	593.46	6.82	NII	0.00	. 263
1/-32	605 17	20.20	NI	NA	NA	NA	10.83	ND	0.00	594.34	NM	ND	0.00	
SG-1	595.46	NA	NI	NA	NA	NA	NI	NA	NA	NA	4.85	ND	o da	4.3

¹ AMSL - Above Mean Sea Level

ibtoc - below top of casing

³ ND - none detected

⁴ NM - not measured

⁵ Note LNAPL was bailed from wells on 9/8/97 during an attempted product recovery test

⁶ NA - Not Available

⁷ led out of piezometer on 9/8/97

⁸ diffied to flush mount on 9/6/97.

⁹ NI - Not Installed

TABLE 3.3

SUMMARY OF PIEZOMETER CONSTRUCTION DETAILS

LENZ OIL SITE

LEMONT, ILLINOIS

	Ground			Screened	Interval	Screened	Interval			
	Surface	Bottom c	of Boring	From	To	From	To			
Well	Elevation	Depth	Elevation	De_i	pth	Dep	oth	Formation	Date	
Number	(feet AMSL) ¹	(ft BGS) 2	(NGVD)	(ft B	(ft BGS)		VD)	Screened	Completed	
P-25S	596.5	13.0	583.5	2.5	12.5	594.0	584.0	Weathered Bedrock	09/05/97	
P-28	595.8	13.0	582.8	2.5	12.5	593.3	583.3	Weathered Bedrock	09/05/97	
P-29	593.8	13.0	580.8	2.5	12.5	591.3	581.3	Weathered Bedrock	09/05/97	
P-30	595.9	13.0	582.9	2.5	12.5	593.4	583.4	Weathered Bedrock	09/04/97	
P-31	600.8	13.0	587.8	2.5	12.5	598.3	588.3	Weathered Bedrock	09/05/97	
P-32	601.7	15.0	586.7	5.0	15.0	596.7	586.7	Weathered Bedrock	09/04/97	

¹ AMSL - Above Mean Sea Level

² ft BGS = Feet Below Ground Surface

TABLE 3.4

SUMMARY OF PIEZOMETER DEVELOPMENT PARAMETERS
LENZ OIL SITE
LEMONT, ILLINOIS

Well Number	Date Conducted	Water Level feet btoc)	Well Volume (gallons)	Volume Removed (gallons)	pH (Standard Units)	Conductivity (µhmos)	Temperature (°C)	Appearance	Development Method
P-25S	9/8/97	4.78	1.2	5.0	D	ue to sheen on pu	rged water, rea	dings were not take	Bailed
P-28	9/5/97	6.77	1.3	4.0	7.70	1,231	15.5	cloudy, light gray	Bailed
	, ,			7.0	7.66	1,077	15.5	1. cloudy, light gra	Bailed
				9.0	7.46	1,035	15.3	1. cloudy, light gra	Bailed
				11.0	7.50	1,030	15.6	l. cloudy, light gra	Bailed
P-29	9/5/97	5.72	1.5	4.0	7.46	1,590	17.8	cloudy, gray	Bailed
	, ,			8.0	7.32	1,095	15.9	cloudy, gray	Bailed
				12.0	7.29	1,048	15.2	cloudy, gray	Bailed
				16.0	7.27	1,048	15.0	cloudy, gray	Bailed
				18.0	7.21	1,043	14.6	cloudy, gray	Bailed
P-30	9/8/97	7.41	1.2	4.0	7.04	1,890	17.0	cloudy, gray	Bailed
	, ,			8.0	7.34	1,560	16.1	cloudy, gray	Bailed
				9.5	7.16	1,560	15.8	cloudy, gray	Bailed
				11.0	7.07	1,205	15.8	cloudy, gray	Bailed
				12.5	7.05	1,252	15.9	cloudy, gray	Bailed
				14.0	7.05	1,248	15.8	cloudy, gray	Bailed
P-31	9/8/97	6.98	0.85	2.5	7.44	1,105	16.9	cloudy, gray	Bailed
• 0	., ., .			3.5	7 59	1,194	16.9	cloudy, gray	Bailed
				4.5	7.61	1,201	16.9	cloudy, gray	Bailed
				5.5	7.61	1,209	16.9	cloudy, gray	Bailed
P-32	9/5/97	12.46	1.2	2.0	7.28	6,050	15.1	sl. cloudy, gray	
	- 1 - 1				Well	purged dry at 4.0	gallons	· · · ·	

CRA 6711 (2)

TABLE 3.4

SUMMARY OF PIEZOMETER DEVELOPMENT PARAMETERS
LENZ OIL SITE
LEMONT, ILLINOIS

Well Number	Date Conducted	Water Level feet btoc)	Well Volume (gallons)	Volume Removed (gallons)	pH (Standard Units)	Conductivity (µhmos)	Temperature (°C)	Appearance	Development Method
P-25S	9/8/97	4.78	1.2	5.0	Dı	ue to sheen on pu	irged water, read	lings were not take	Bailed
	9/6/97			5.5	7.10	6,950	14.7	sl. cloudy, gray	
				7.0	7.17	6,790	14.0	sl. cloudy, gray	
				8.5	7.18	6,810	14.1	sl. cloudy, gray	

TABLE 3.5

SUMMARY OF MONITORING WELL/PIEZOMETER PURGING PARAMETERS
LENZ OIL SITE
LEMONT, ILLINOIS

Well Number	Date Conducted	Water Level (feet btoc)	Well Volume (gallons)	Volume Removed (gallons)	pH (standard units)	Conductivity (µhmos)	Temperature (°C)	Appearance	Purge Method
MW-35	09/10/97	6.95	2.4	3.0	6.90	1,129	14.4	sl. cloudy, sulfur odor, black debris	Bailed
				5.0	6.94	1,038	13.6	clear, sulfur odor, black debris	Bailed
				<i>7</i> .5	6.95	1,015	13.2	clear, sulfur odor, black debris	Bailed
				10.0	6.95	985	12.9	clear, no odor, less debris	Bailed
				12.5	6.95	978	12.9	clear, no odor, less debris	Bailed
MW-65	09/10/97	2.81	2.2	2.5	7.10	713	14.7	cloudy, brown-gray, sulfur odor	Bailed
				5.0	7.11	711	14.7	cloudy, brown-gray, sulfur odor	Bailed
				7.5	7.12	707	14.6	cloudy, brown-gray, sl. odor	Bailed
				10.0	7.11	709	14.5	cloudy, brown-gray, sl. odor	Bailed
				12.5	7.13	702	14.3	cloudy, brown-gray, sl. odor	Bailed
				15.0	7.12	704	14.6	cloudy, brown-gray, sl. odor	Bailed
P-28	09/10/97	4.33	1.3	1.5	7.18	1,016	14.3	cloudy, milky white	Bailed
	, ,			3.0	7.23	1,030	13.9	cloudy, milky white	Bailed
				5.0	7.32	1,027	13.4	cloudy, milky white	Bailed
				6.5	7.27	920	13.9	cloudy, milky white	Bailed
				7.5	7.44	955	13.6	cloudy, milky white	Bailed
P-29	09/10/97	5.91	1.4	1.5	7.12	1,224	13.9	cloudy, gray, petroleum odor, sheen	Bailed
	, ,			3.0	7.12	1,189	13.5	cloudy, gray, petroleum odor, sheen	Bailed
				4.5	7.08	1,184	13.4	cloudy, gray, petroleum odor, sheen	Bailed
				6.0	7.04	1,112	12.9	cloudy, gray, petroleum odor, sheen	Bailed
				7.5	7.05	1,104	12.7	cloudy, gray, petroleum odor, sheen	Bailed
P-30	09/10/97	7.61	1.2	1.5	6.98	1,580	16.0	cloudy, brown-gray	Bailec
	. ,,			3.0	7.02	1,293	15.6	cloudy, brown-gray	Baileci
				4.5	7.03	1,262	14.9	cloudy, brown-gray	Bailed
				6.0	7.07	1,266	14.5	cloudy, brown-gray	Bailed
				7.5	7.11	1,261	14.6	cloudy, brown-gray	Bailed

i,

TABLE 4.1 Page 1 st.

GROUNDWATER ELEVATION HISTORY LENZ OIL SITE LEMONT, ILLINOIS

	Reference																		
	Elevation								Groundwa	er Elevatio	on (feet AN	(SL)							
Well / Piezometer	(feet AMSL1)	1/9/91	2/26/91	3/20/91	4/24/91	5/9/91	6/24/91	7/30/91	8/27/91	9/27/91	10/30/91	11/21/91	12/23/91	1/28/92	2/19/92	3/19/92	8/19/94	8/26/94	4/
G101M	612.05	594.53	595.75	595.90	596.74	595.84	594.50	592.71	592.15	591.89	594.15	594.25	594.55	594.00	594.10	$594 \ ti$	593,54	593 13	5,61 > 12
MW 15	602.88			595.96	596.70	595.74	591.60	590 16	590.00	589.96	593.36	594.55	594.53	594.00	594 20	594.57	593.56	592.96	1929.
MW-2S	603.23					595.31	593.55	591 81	591.30	591.11	596.13	594.42	594.21	593.00	594.09	594 16	592.92	592.33	542 76
MW-3S	597.99				592.84	591.48	589.64	588.93	588.80	588.87	593.30	592 15	591.35	590.00	591.33	591.34	589.59	588 ln	589.21
MW-4S	603.35			596.34	596.29	595.41	593.86	592.08	591.58	591 42	596.81	594.46	594.23	594 00	593.95	594 22	593.39	592.73	59 <u>2</u> t
MW-6S	594.04				593.36	592.44	590.11	589.24	589.11	589 21	593.72	592.22	592.11	591 00	591.53	591.72	590.55	589 56	589
MW-85	602.48														593.79	594-25	593.27	592.78	.1 ^{(-, 2}
P05	602.84																593 65	593-07	D 12 64
1'06	603.65																594-16	593 50	5952
P07	600.55																593.51	592.97	5.2 -
P08	600 81																593.53	593-02	5.75
P09	603.62																593-22	592 n3	1.1.
P14	603.69																592.27	591.66	4.51
123	600.87																		
P24S	596 18																		

¹ AMSL - Above mean sea level

598.23

P26

TABLE 4.1 Page 2 or

GROUNDWATER ELEVATION HISTORY LENZ OIL SITE LEMONT, ILLINOIS

	Reference Elevation						Groundwa	ter Elevatio	m (feet AM	SL)				
Well / Piezometer	(feet AMSL ³)	9/9/94	9/16/94	9/23/94	9/30/94	10/7/94	10/25/94	11/1/94	11/8/94	8/7/97	9/10/97	MINIMUM	MAXIMUM	RANGE
G101M	612.05	592 72	592.50	593.32	592.75	592.49	592.40	593.12	594 06	594.23	594.13	591.89	596 74	4.85
MW-15	602.88	592.43	592.51	592.03	592.32	592.06	591.88	593.16	594.24	594.12	593,99	589 96	596.70	b 74
MW-25	603.23	591.90	592.09	591 69	591.76	591.51	591 36	593.48	594.23	593.44	593.27	591.11	596.13	5.02
MW-3S	597.99	589.04	588.87	589.03	589.11	588.87	588.98	591.88	592.29	590.64	591.04	588.16	592 29	4.13
MW-4S	603.35	592.23	591.96	591.72	592.25	591.89	591.67	592.95	594.04	594.67	593.76	591.67	596.81	5.14
MW-6S	594.04	589.07	589.29	589.37	589.56	589.29	589.43	592.36	592 51	591.31	591.23	589.07	593.72	1.65
MW-8S	602.48	592.56	592.20	592.23	592.56	592.17	591.98	592.80	593,73	593.78	593.84	591.98	593.84	1.86
P05	602.84	592.63	592.24	593.33	592.71	591.38	592 14	593.29	594.31	594.76	594.11	591.38	594.76	3.38
P06	603.65	592.84	592.50	592.31	592.80	592.44	592 26	592.89	594.81	594.90	594-26	592.26	594.90	2.64
P07	600.55	Dry	592.16	592.18	592.61	592.29	592 08	592.98	593.96	593.86	593 <i>77</i>	592,08	593.96	1.88
P08	18 000	592.55	592 14	592.16	592.74	592.29	592.09	593.79	594.19	593.85	593.7b	592.09	594.19	2.10
P09	603.62	592.22	591 81	591.73	592.19	591.86	591.68	592.77	594.10	594.01	593.81	591 68	594.10	2.42
1'14	603 69	591.29	591 00	590.94	591.39	591 05	590.87	592.90	593.58	592 94	592.80	590.87	593,58	2.71
P23	600.87		590.47	590.50	590.79	590 52	590.39	591.30	592 95	NS	NS	590,39	592,95	2 10
P24S	596.18						589.28	592.12	592.44	596 12	595 64	589.28	596.12	5.84
P26	598.23		589.52	589.62	589.80	589.54	589.48	592 33	592.91	591 55	591.54	589.48	592,91	3.43
											Minimum	588.16	592.29	1.86
1 AMSL - Above mean s	ea level										Maximum	592 26	596.81	6.84
										A	rithmetic M	590.83	594.61	3.77
										G	eometric M	590 83	591 60	3.46

TABLE 4.2

SUMMARY OF VOCs DETECTED IN LNAPL SAMPLES

LENZ OIL SITE

LEMONT, ILLINOIS

	Residential	Concentration µg	y/kg ¹		
Analyte	Well	MW-5S	P19 ¹	Comment	
Chloroethane	ND^2	ND	23,000		
Acetone	5,800	ND	ND		
1,1-Dichloroethene	ND	ND	4,200		
1,1-Dichloroethane	ND	ND	120,000	E^3	
cis-1,2-Dichloroethene	ND	ND	320,000	E	
1,1,1-Trichloroethane	ND	ND	170,000	E	
1,2-Dichloropropane	ND	ND	5,500		
Benzene	ND	ND	240,000	E	
Tetrachloroethene	ND	ND	8,400		
Toluene	ND	ND	3,700,000		
Chlorobenzene	ND	ND	11,000		
Ethylbenzene	ND	6,900	1,400,000		
Xylenes	4,700	29,000	6,400,000		
Total VOCs µg/kg	10,500	35,900	12,402,100		

 $^{^{1}}$ µg/kg = micrograms per kilogram

 $^{^{2}}$ ND = Not detected

 $^{^{3}}$ E = Indicates that it exceeds calibration curve range.

TABLE 4.3

SUMMARY OF VOCs DETECTED IN SOIL SAMPLES LENZ OIL SITE LEMONT, ILLINOIS

Sample Location Sample Interval	BH-2 4-6 feet bgs ¹	BH-8 2-4 feet bgs				
Analyte	Detected Concen	tration µg/kg²				
Benzene	34 J ³	ND(5) 4				
Trichloroethene	ND(5) UJ ⁵	б				
Tetrachloroethene	6 J	ND(5)				
Ethylbenzene	32 J	ND(5)				
Xylenes, total	160 J	18				
Acetone	27 J	20				

¹ bgs - below ground surface

 $^{^{2}}$ µg/kg - micrograms per kilogram

³ J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

⁴ ND(5) - Compound not detected at concentration greater than the detection limit shown in parentheses

⁵ UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

TABLE 4.4

SUMMARY OF LNAPL RECOVERY TEST RESULTS LENZ OIL SITE LEMONT, ILLINOIS

Apparent

		Interval e Test	Apparent LNAPL Thickness	Calculated ¹ LNAPL	Capillary Fringe	
Monit, ring Well/ Piezometer	From (feet btoc)	To (feet btoc)	Before Test (feet)	Thickness (feet)	Thickness (feet)	
P20	7.09	12.97	5.88	0.2	5.68	
G106L	9.92	12.52	2.6	0.16	2.44	
P19	12.07	16.55	4.48	1.6	2.88	

1 Using method after Graszczenski (1987)

the second section is a second second

APPENDIX A WATER WELL SEALING FORM

ILLINOIS DEPARTMENT OF PUBLIC HEALTH DIVISION OF ENVIRONMENTAL MEALTH 525 WEST JEFFERSON STREET

SPRINGFIELD, ILLINOIS 62761

RETURN ALL COPIES TO IDPH OR LOCAL HEALTH DEPARTMENT

TYPE OR PRESS FIRMLY	
This form shall be submitted to this Department or the local health department not more than 30 days after a water well, bori	ng

or monitoring well is sealed. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Water Well Construction Code. Ownership (Name of Controlling Party) Peter Tameting (8 S. 365 Madson Street, HusseleTe)

Well Location: R.R. - 2 and Jeans Rd. Lemont Cook

Address - Lot Number City County 1. 2. Township 37 (N)(S) Range // (E)(W) Section // General Description: SE Quarter of the NW Quarter of the SE Quarter 3. Year Drilled Unknown Drilling Permit Number (and date, if known) unknown 4. Type of Well: Bored Drilled X Other 5. Total Depth 92.0 Diameter (inches) 5" Stee! 6. Formation clear of obstruction X Yes 7. 8. DETAILS OF PLUGGING Filled with Pea Grave from 92.0 to 45.0 ft. Kind of plug Bentonite Chips from 45.0' to 5.0 ft. Filled with Concrete from Kind of plug from Filled with from to ft. Kind of plug from to ft. CASING RECORD: Upper 3 feet of casing removed _____Yes ___X_No 9. Date well was sealed: Month August Day 7TH Year 1997. 10. 11. Licensed water well driller or other person approved by the Department performing well sealing.

This State Agency is requesting disclosure of information that is necessary to accomplish the statutory purpose as outlined under Public Act 85-0863. Disclosure of this information is mandatory. This form has been approved by the Forms Management Center.

IL 482-0631

W

APPENDIX B

SOIL BORING STRATIGRAPHIC LOGS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN;

(CL:-01) Page 1 of 1

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: BH-1

DATE COMPLETED: SEPTEMBER 02, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION			AMPLE	·
11. 003	GROUND SURFACE	595.8	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	(FILL) (CL)—CLAY, silt trace of gravel, stiff, brown, slightly moist			155	X	8	B.2
-2.5	- saturated (CL)-CLAY, some silt, trace of gravel, soft,	593.3		255	X	2	65.2
5.0	brown to black, saturated slight petroleum odor - thin 3 inch sand seam, no odor		BENTONITE CHIPS	355	X	5	LG.
7.5		587.8	8" 0	455	X	2	3.5
10.0	(ML)SILT, trace of gravel and sand size graines, hard gray, possibly weathered bedrock (dolomite) rock fragment at base of the spoon END OF BOREHOLE SPLIT SPOON REFUSAL AT	586.8	BOREHOLE	555	\times	>50	t.Z
12.5	9.0ft.						
15.0							
17.5							
20.0							
22.5							
5.0							
7.5							
0.0							
2.5		1	ſ	ı ı	1	ſ	

WATER FOUND \$ STATIC WATER LEVEL \$

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL -02) Page 1 of 1

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: BH-2

DATE COMPLETED: SEPTEMBER 02, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	1	ELEV.	MONITOR		 \$.	AMPLE	
ft. BGS	SINATIBRAFFIC DESCRIPTION & REMARKS	ft. AMSL		NUMBER	STATE	VALUE	PID
	GROUND SURFACE	598.0		Š	ST	ż	(ppm)
-2.5	(FILL) (CL)CLAY, some silt trace of gravel, very stiff, brown, slightly moist - brick			158	X	32	a
F2.3	- Asphalt and rubble			255	X	32	240
-5.0	(CL)CLAY, little silt, trace of gravel, stiff, brown to gray (mottled), wet - stained soil black petroleum odor.	592.0	BENTONITE CHIPS	355	X	g	354
-7.5	(ML)-SILT, little gravel and trace of sand size graines, very stiff, saturated gray, possibly weatherd bedrock.	589.5	8" Ø BOREHOLE	455	X	24	603
-10.0	- END OF BOREHOLE AT 10.0ft.	586.0		555	\triangle	36	11.2
-12.5							
15.0							
-17.5							
20.0							
22.5							
-25.0							
-27.5							
-30.0							
-32.5							
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE: RE						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND I STATIC WALER LEVEL Y

CHEMICAL ANALYSIS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

്വ പ്രവ അല

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: BH-3

DATE COMPLETED: SEPTEMBER 02, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

<u> </u>	<u>بر بر در در بر بر بر در در در در در در در بر در بر در بر در در</u>		·				
DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION	<u> </u>	1	AMPLE	
11.300	GROUND SURFACE	597.6	MOTALEATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	(FILL) (CL)-CLAY, some silt, little gravel, very stiff, brown dry, little gravel and rubble			ıss	X	37	10.2
-2.5	(SP)-SAND, little gravel trace of silt, dense, poorly graded, tan to gray, wet, sand is fine grained with little medium to coarse grains	595.8		255	X	43	a
-5.0	- sand becomes saturated		BENTONITE CHIPS	358	X	23	35.0
-7.5	(SW)-SAND, some gravel (angular dolomite) fine and coarse graind, trace of silt extremely dense, saturated, gray to tan, weathered	590.6	8- Ø BOREHOLE	45\$	$\langle \rangle$	35	54.8
-10.0	END OF BOREHOLE AT 10.0ft	587.8		555	\triangle	85	10.2
-12.5				1			
-15.0							
-17.5							
-20.0							
-22.5						Ì	
-25.0							
-27.5							
-30.0							
-32.5							
	j						
ИО	IES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO C	CURRENT ELEVATION TABLE				

WATER FOUND Y STATIC WATER LIVEL Y CHEMICAL ANALYSIS

STRATIGRAPHIC AND INSTRUMENTATION LOG-(OVERBURDEM)

(Cu-da) : Page (a) : :

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: BH-4

DATE COMPLETED: SEPTEMBER 03, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

			,				
DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION	<u> </u>	S	AMPLE	:
11. 003	GROUND SURFACE	599.9	NOTIALLENI	NUMBER	STATE	'N' VALUE	PID (ppm)
	(FILL) (CL)-CLAY, some silt, trace of gravel, stiff, brown, slightly moist			155	X	12	٥
-2.5	(ML)-SILT, little clay, trace of gravel and	596.9		255	X	23	202
-5.0	roots, very stiff, brown, moist (SP)-SAND, fine grained, little medium and trace of course grains, medium dence, tan,	595.6	BENTONITE CHIPS	355	X	21	305
-7.5	saturated (ML)-SILT, some gravet (angular dolomite), little sand size grains, hard, moist, light brown	593.7		455	X	>50	21.3
100	to gray END OF BOREHOLE AT 8.5ft	591.4	8" Ø BOREHOLE	555	\bowtie	>50	-
- 10.0							
-12.5	•						
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							Ì
-30.0							
32.5							
NO.	TES: MEASURING POINT ELEVATIONS MAY CHANGE: F	EFER TO CL	URRENT ELEVATION TABLE				

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

130-10° 1 to 1 505°

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: BH-5

DATE COMPLETED: SEPTEMBER 03, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

	y = 1,		,				
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	ļ 	S	AMPLE	
ft. BGS		ft. AMSL	INSTALLATION)ER	15	TUE	PID
	GROUND SURFACE	801.5		NUMBER	STATE	'N' VALUE	(ppm)
	TOP SOIL AND VEGITATION	801.0	223	155	\bigvee		α
1 1	(ML)-SILT, little gravel, trace of clay, brown, moist	601.0		133	\triangle		•
-2.5	(ML)-SILT, some gravel, trace of sand size	599.0		255	\bigvee	_	3.6
	grains, tan to gray, moist, (weatherd bedrock)		BENTONITE CHIPS	(\triangle		
-5.0			8" 0	355		-	T,4
			BOREHOLE	355	\leq	_	_
-7.5	END OF BOREHOLE AT 6.5ft.	595.0	المسم			1	
['.3				1			
					ļ		
-10.0				}		l	
1		1			}	- 1	
-12.5				Ì	İ	1	
1							
-15.0		1		l	1		1
		1				- }	1
-17.5				- 1	1		
[".3]						1	
		1		1	Ì		
20.0		}				- {	1
							Į.
-22.5]
				}	-		-
-25.0		[[
		[j
07.5)
-27.5							
						}	
-30.0						1	1
							1
-32.5					1		1
		· .			1		
							j
NO	TES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO CU	URRENT ELEVATION TABLE				

WATER FOUND \$\PT\$ STATIC WATER LEVEL \$\PT\$

CHEMICAL ANALYSIS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

fgL+0 . Page 1 of :

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

CHEMICAL ANALYSIS

HOLE DESIGNATION: BH-7

DATE COMPLETED: SEPTEMBER 03, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL 601.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	SILT AND GRAVEL (ML)-SILT, little gravel trace of sand, firm brown, moist	600.7 600.0 599.0		เรร	X	g	a
-2.5	(SP)-SAND, fine graned, little gravel, medium dense, tan, moist	599.0	BENTONITE CHIPS	255	X	4 0	14.T
-5.0	(ML)-SILT, some gravel, (angular dolomite), little sand size grains, hard, gray to tan, moist END OF BOREHOLE AT 4.5ft	596.5	8" Ø BOREHOLE	355	X	-	8.4
-7.5				455	X	-	
-10.0		}					
-12.5							
-15.0						ĺ	
-17.5							
20.0							
22.5							
25.0							
27.5							
30.0							
32.5				}			
		İ				-	

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(Ct. 150) Page 1 of 1

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: BH-8

DATE COMPLETED: SEPTEMBER 03, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

DERT		E151	HONITOD		S	AMPLE	
DEPTI ft. BG	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION	æ		,	
	GROUND SURFACE	600.1		NUMBER	STATE	'N' VALUE	(bbw)
	(FILL)-SILT, sand and gravel (ML)-SILT, little gravel, trace of sand and clay, firm, brown, moist	597.8		ISS	X	8	1.4
2.5	(ML)—SILT, some gravel, (angular dolomite), little sand size grains, hard, gasoline odor (weatherd bedrock), gray to tan, moist	397.0	BENTONITE CHIPS	2SS 3SS	\bigvee	36 >50	65.4 13.7
5.0	- becomes saturated -END OF BOREHOLE AT 6.0ft	594.1	8" Ø BOREHOLE	333		/30	1
-7.5	-END OF BOREHOLE AT 6.010						' !
-10.0							
-12.5							
-15.0							
-17.5							
-2 0 .0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; P	EFER TO C	URRENT ELEVATION TABLE				

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND ♥ STATIC WATER LEVEL ♥

CHEMICAL ANALYSIS

STRATTER & PHIC AND INSTRUMENT & TECH LOG (OVERBURDEN)

(() **-0**() Yace F**o**()

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

CHEMICAL ANALYSIS

HOLE DESIGNATION: BH-9

DATE COMPLETED: SEPTEMBER 03, 1997

DRILLING METHOD: 3 3/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	-	5	AMPLE	:
II. 805	GROUND SURFACE	599.3	INSTALLATION	NUMBER	STATE	'N' VALUE	PIO (ppm
	(ML)-SILT, little gravel and clay, stiff dark brown to black, moist			155	X	>50	α
2.5		595.5	BENTONITE	255	X	29	α
5.0	(ML)—SILT, some gravel, (angular dolomite), little sand size grains, (weathered bedrock), gray to tan, moist	593.3	CHIPS 8" Ø BOREHOLE	355	X	33	a
7.5	- saturated END OF BOREHOLE AT 8.0ft	593.3					i
0.0							ļ
12.5							
5.0							
7.5							
0.0							
2.5							
5.0							
7.5							
0.0							
2.5							

APPENDIX C PIEZOMETER STRATIGRAPHIC AND INSTRUMENTATION LOGS

(CL-IC) Page Lof 1

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: P-25S

DATE COMPLETED: SEPTEMBER 5, 1997

DRILLING METHOD: 4 1/4" HSA CRA SUPERVISOR: W. Pochron

-2.5	STRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE REFERENCE POINT (Top of Riser)	ft. AMSL	INSTALLATION	æ	l	, بنا إ)
-2.5		598.5 598.21		NUMBER	STATE	N' VALUE	(ppm)
-5.0	FOR STRATIGRAPHY DETAILS REFER TO THE STRATIGRAPHIC LOG FOR P-25		CONCRETE BENTONITE CHIPS 2" Ø WELL CASING WELL SCREEN 8" Ø			1,	
−7.5 −10.0			WELL SCREEN 8" Ø BOREHOLE SAND PACK				
-12.5	END OF HOLE @ 13.0ft BGS	583.5					
-15.0			SCREEN DETAILS Screened Interval: 2.5 to 12.5tt BGS Length: 10.01t Diameter: 2"				
-17.5			Slot Size: #10 Material: Stainless Steel Sand Pack: 2.5 to 13.01t BGS Material: #5 Silica Sand				
-20.0							
-22.5							
-25.0							!
-27.5							
-30.0							
-32.5							

TES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♥ STATIC WATER LEVEL ♥

(Ct -tf) Page Laft

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Iffinois

HOLE DESIGNATION: P-28

DATE COMPLETED: SEPTEMBER 5, 1997

DRILLING METHOD: 4 1/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	OTRATIONALIVA DECONTRATA A STUDIO	ELEV.	MONITOR	SAMPLE							
ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS GROUND SURFACE	ft. AMSL 595.8		NUMBER	STATE	N' VALUE	PID (ppm)				
	REFERENCE POINT (Top of Riser)	595.57	L CONCRETE	ž	S	ż					
-2.5	(CL)-CLAY, little silt and gravel, firm, brown, moist	595.4	BENTONITE CHIPS	ıss	X	7	0.8				
	(ML)-SILT, some gravel (angular dolomite),	592.0	2" Ø WELL CASING	255	\triangle	15	σ -				
-5.0	little sand size grains, hard, tan to gray, weatherd bedrock		SCREEN B' Ø BOREHOLE	355		>50	-				
-7.5			SCREEN SCREEN BOREHOLE SAND PACK								
-10.0											
-12.5	END OF HOLE @ 13.0ft BGS	582.8									
-15.0			SCREEN DETAILS Screened interval: 2.5 to 12.51t BGS Length: 10.01t Diameter: 2"								
-17.5			Slot Size: #10 Material: Stainless Steel Sand Pack: 2.5 to 13.0ft BGS Material: #5 Silica Sand								
-20.0											
-22.5											
-25.0											
27.5											
30.0											
32.5											
NO.	TES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EEED TO C	IIDDENT ELEVATION TADIS				{				

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND \$\PI\$ STATIC WATER LEVEL \$\P\$

(CL-12) Page 1 of 1

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: P-29

DATE COMPLETED: SEPTEMBER 5, 1997

DRILLING METHOD: 4 1/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	SAMPLE							
ft. BGS	REFERENCE POINT (Top of Riser)	ft. AMSL 597.08	8년 구 -	NUMBER	STATE	N' VALUE	PID (ppm)				
	GROUND SURFACE FILL (ML)-SILT, little clay, gravel and cobbies,	593.8	CONCRETE	Ž	6	ێ	<u> </u>				
-2.5	brownish gray, dry (ML)—SILT, little gravel, trace of clay, stiff, brown, moist	592.3	BENTONITE CHIPS 2" Ø WELL CASING	155	\bigvee	9	-				
-5.0	(ML)-SILT, some gravel (angular dolomite), little sand size grains, hard, saturated tan to gray, (weathered bedrock)	589.8									
-7.5			WELL SCREEN 8" Ø BOREHOLE SAND PACK								
-10.0											
-12.5	END OF HOLE @ 13.0ft BGS	580.8									
-15.0			SCREEN DETAILS Screened Interval: 2.5 to 12.5ft BGS Length: 10.0ft Diameter: 2"								
-17.5			Slot Size: #10 Material: Stainless Steel Sand Pack: 2.5 to 13.01t BGS Naterial: #5 Sliica Sand								
-20.0											
-22.5											
-25.0											
-27.5											
-30.0											
-32.5											
NU	TES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	URRENT ELEVATION TABLE								

WATER FOUND 7

STATIC WATER LEVEL Y

(CL-13) Page Lof :

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: P-30

DATE COMPLETED: SEPTEMBER 4, 1997

DRILLING METHOD: 4 1/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	SAMPLE								
ft. BGS	REFERENCE POINT (Top of Riser) GROUND SURFACE	ft. AMSL 598.81 595.9	INSTALLATION	NUMBER	STATE	'N' VALUE	PIO Pon					
-2.5	FOR STRATIGRAPHIC DETAILS REFER TO THE STRATIGRAPHIC LOG FOR 3H-1		CONCRETE BENTONITE CHIPS 2" Ø WELL CASING									
5.0			WELL SCREEN									
7.5			SCREEN 8" Ø BOREHOLE SAND PACK									
10.0												
12.5	END OF HOLE @ 13.0ft 8GS	582.9										
15.0			SCREEN DETAILS Screened interval: 2.5 to 12.5tt BGS Length: 10.0ft Diameter: 2"									
7.5			Slot Size: #10 Material: Stainless Steel Sand Pack: 2.5 to 13.01t BGS Material: #5 Silica Sand									
20.0												
22.5												
25.0												
7.5												
0.0												
2.5												
NOI	ES: MEASURING POINT ELEVATIONS MAY CHANGE; R											

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND \$\Psi\$ STATIC WATER LEVEL \$\Psi\$

(CL-14) Page Infi

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois

HOLE DESIGNATION: P-31

DATE COMPLETED: SEPTEMBER 5, 1997

DRILLING METHOD: 4 1/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR				
ft. BGS	GROUND SURFACE REFERENCE POINT (Top of Riser)	ft. AMSL 600.8 600.57	INSTALLATION	NUMBER	STATE	N' VALUE	PIO (ppm)
	TOP SOIL AND VEGITATION	600.4	CONCRETE		7	-	
-2.5	(ML)-SILT, little gravel and sand, stiff, brown, moist		BENTONITE CHIPS 2" Ø WELL CASING	155 255	X	8 10	ora a
-5.0	(ML)-SILT, some gravel (angular dolomite) and little sand size grains, hard, gray to tan, wet, (weatherd bedrock)	598.5	WELL SCREEN B" Ø	355	\bigvee	45	LE
-7.5	– saturated		WELL SCREEN 8" Ø BOREHOLE SAND PACK	4SS 5SS		>50 >50	Q.7
-10.0							
12.5	END OF HOLE @ 13.0ft BGS	587.8	SCREEN DETAILS				
15.0			Screened interval: 2.5 to 12.5tt BGS Length: 0.0ft Dlameter: 2" Slot Size: #10				
17.5			Material: Stainless Steel Sand Pack: 2.5 to 13.01t BGS Material: #5 Silica Sand				
20.0							
22.5							
25.0							
27.5							
30.0							
32.5							
			į	1	1	İ	

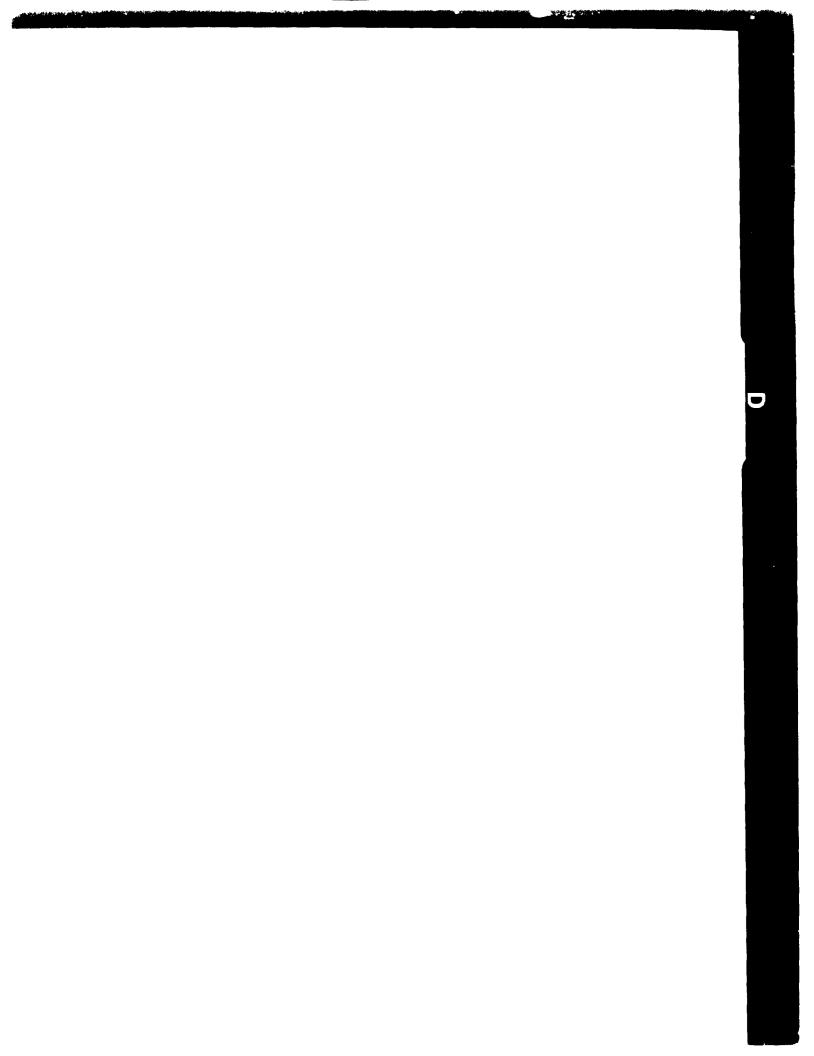
OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE
WATER FOUND \$\frac{1}{4}\$ STATIC WALLER LEVEL \$\frac{1}{4}\$

(CL=15) Page Lof t

PROJECT NAME: LENZ OIL SITE

PROJECT NUMBER: 6711

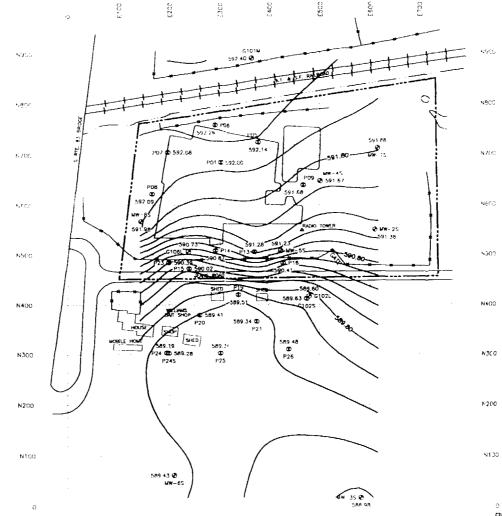
CLIENT: LENZ OIL PRP GROUP LOCATION: Lemont, Illinois


HOLE DESIGNATION: P-32

DATE COMPLETED: SEPTEMBER 4, 1997

DRILLING METHOD: 4 1/4" HSA CRA SUPERVISOR: W. Pochron

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		s	AMPLE	
ft. BGS	REFERENCE POINT (Top of Riser)	ft. AMSL 605.17	<u> </u>	NUMBER	STATE	N' VALUE	PID (ppm)
	GROUND SURFACE (FILL) (ML)—SILT, little gravel, and clay trace of sand, stiff, slightly moist, brown	601.7	CONCRETE	ISS		ž t	7.3
-2.5		598.5	BENTONITE GROUT 2" Ø WELL	255		37	a
-5.0	(ML)-SILT, some gravel (angular dolomite), little sand size grains, hard slightly moist, tan gray, (weathered bedrock)	330.5	CASING BENTONITE CHIPS	355		39	a
-7.5			WELL	455	\boxtimes	>50	a
-10.0			BOREHOLE SAND PACK				
-12.5			SAND PACK				
-15.0	END OF HOLE @ 15.0ft BGS	586.7	SCREEN DETAILS				
-17.5			Screened Interval: 5 to 151t BGS Length: 10.01t Dlameter: 2" Slot Size: ≢10				
-20.0			Material: Stainless Steel Sand Pack: 4 to 15.01t BGS Material: #5 Silica Sand				
-22.5						j	
-25.0							
-27.5							
-30.0							
32.5							
NO	ITES: MEASURING POINT ELEVATIONS MAY CHANGE; I	REFER TO C	URRENT FLEVATION TARIF				


NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND \$\Pi\$ STATIC WATER LEVEL \$\P\$

APPENDIX D

ERM'S GROUNDWATER CONTOUR MAPS (ILLUSTRATING HIGH AND LOW WATER TABLE CONDITIONS)

SYMBOL LEGEND

AREA OF EXCAVATION

DRAINAGE DITCH

PROFERRY LINE

FENCE LINE

RAILRGAD

CONTOUR LINE

BORING IN WEIGHT NO
BOLOWER WAS INSTALLED

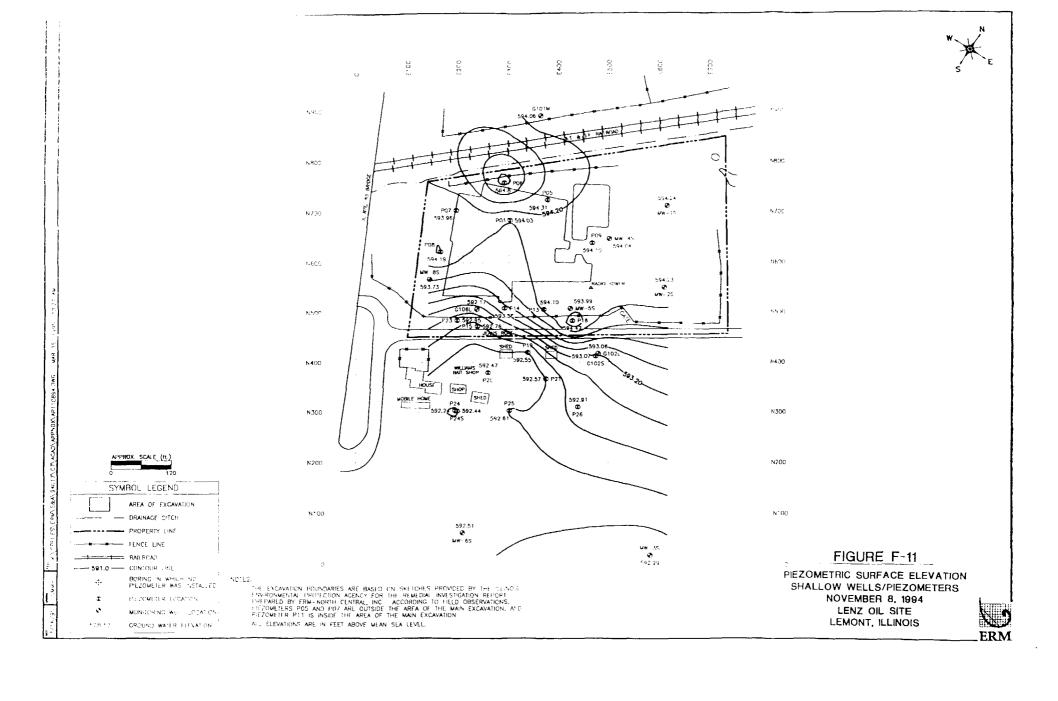
PROFERRY LOCATION

528.52

MONTORING WELL LOCATION

GROUND WATER ELEVATION

APPROX. SCA.F (IL.)


THE EXCAVATION BOUNDARIES ARE BASED ON SKETCHES PROVIDED BY THE 1, INC'S ENVIRONMENTAL PROTECTION AGENCY FOR THE REMEIDIAL INVESTIGATION REPORT PREPARED BY ERM-NORTH CENTRAL INC. ACCORDING TO FIELD DESERVATIONS, PLEOWITERS POS AND POT ARE QUISIDE THE AREA OF THE MAIN EXCAVATION, AND PITZOWITER PITZ IS INSIDE THE AREA OF THE MAIN EXCAVATION, AND PITZOWITER PITZ IS INSIDE THE AREA OF THE MAIN EXCAVATION.

ALL ELEVATIONS ARE IN FEET ARROYS WEAN SEA LEVEL.

FIGURE F-9

PIEZOMETRIC SURFACE ELEVATION SHALLOW WELLS/PIEZOMETERS OCTOBER 25, 1994 LENZ OIL SITE LEMONT, ILLINOIS

APPENDIX E TORKELSON ANALYTICAL REPORT

GW/S ENVIRONMENTAL CONSULTING

GENE W. SCHMIDT, CGWP & PHG Specializing in Hydrocarbon Contamination of Ground Water and Soils

4372 E. 57th Street Tulsa, OK 74135-4238 -(H) 918-496-3859 (O) 918-660-3424 Rec'd CRA SEP 1 6 1997

August 12, 1997

972240001-TUL

Ron Frehner CRA 1801 Old Highway 8, Suite 114 St. Paul, MN 55112

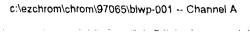
Subject: Lenz Oil Site

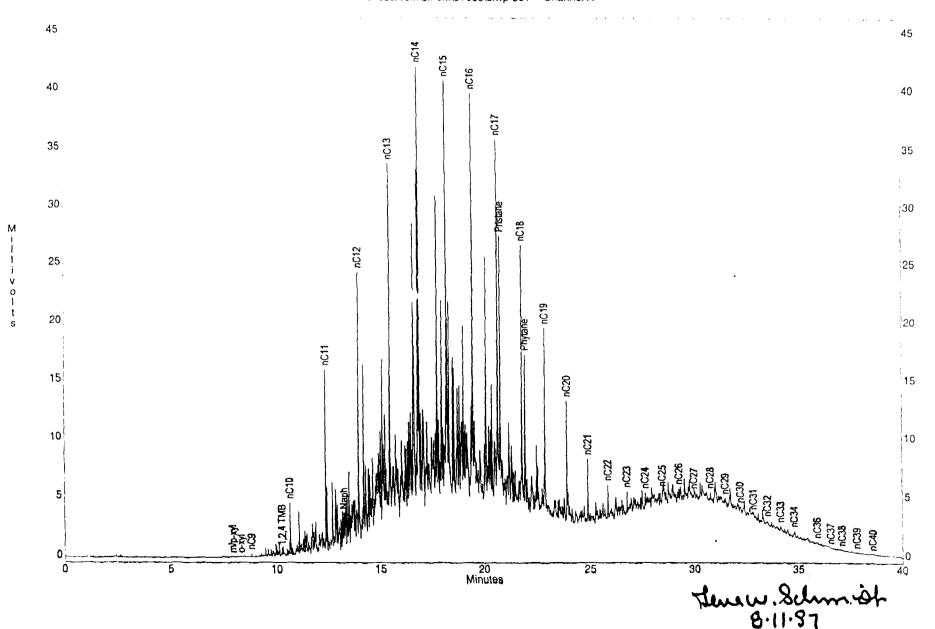
The gas chromatograms (GC) and accompanying data and results of the four product (liquid hydrocarbon) samples collected on August 7, 1997, are attached.

Sample WP-001 is composed of approximately 65% diesel and 34% motor oil. Sample WP-002 is composed of about 62% diesel and 38% motor oil. Both of these samples are from the same diesel and motor oil source and the diesel has been in the subsurface approximately 7 years (±2 years) as calculated from the Schmidt (1997) modification/validation of the Christensen and Larsen plot (1993).

The WP-003 sample is composed of approximately 3% highly degraded gasoline, 44% very highly degraded (weathered) diesel and about 53% motor oil. The diesel has been released to the subsurface about 20 plus years ago.

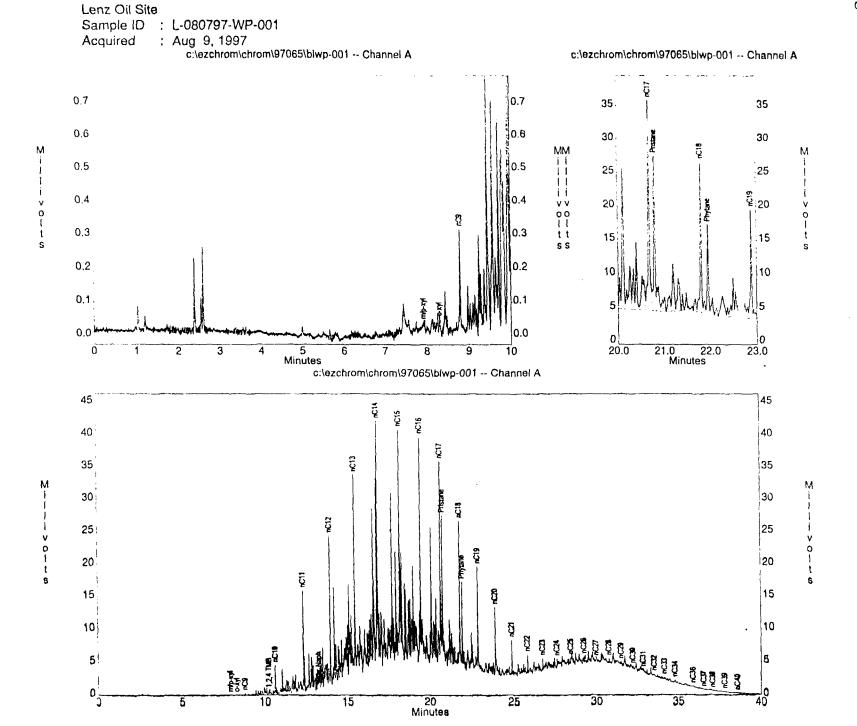
Sample WP-004 is composed of about 12% gasoline (not too degraded), about 42% diesel, which is a different diesel from the type in WP-001 and WP-002. The diesel in this sample is very "fresh" with a release date of approximately 2 years or less ago (±2 years). The remainder of sample WP-004 is composed of approximately 46% motor oil.

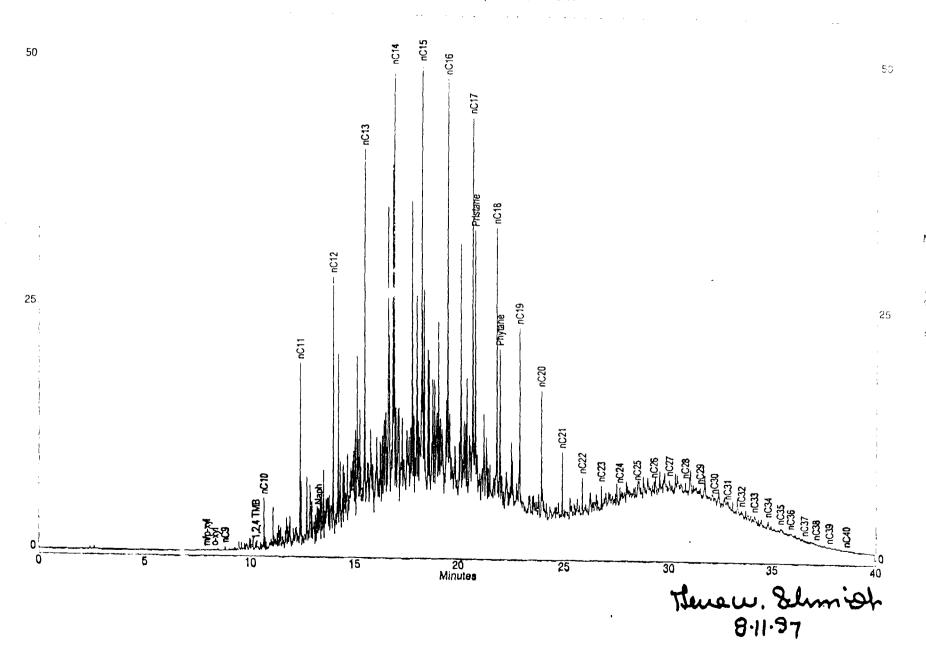

If you need any additional information, please call.


Therew. Ichmich

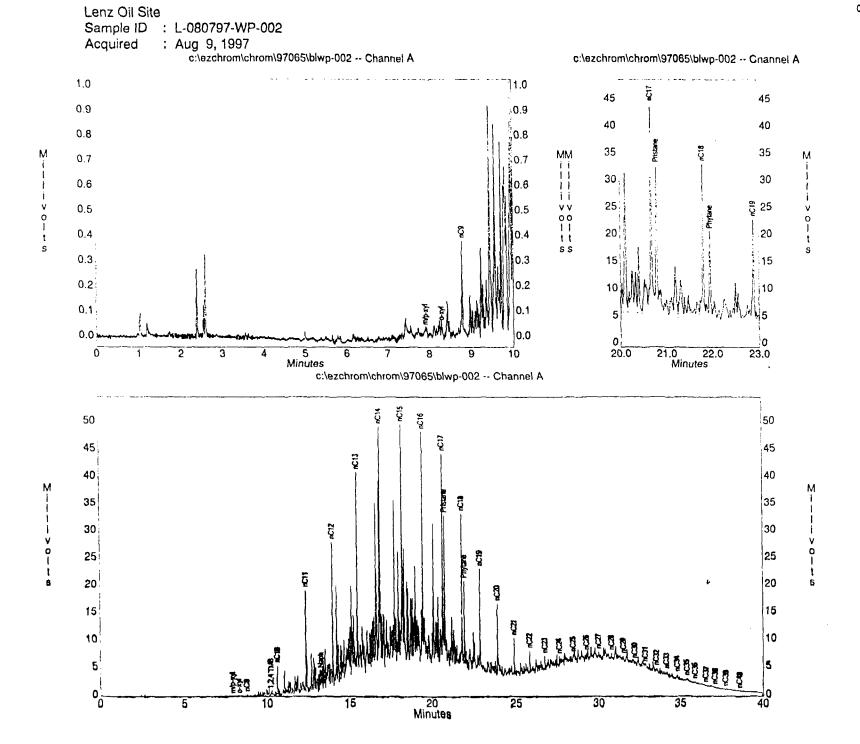
Gene W. Schmidt

GWS:jdy Attachments Lenz Oil Site


Sample ID : L-080797-WP-001 Acquired : Aug 9, 1997

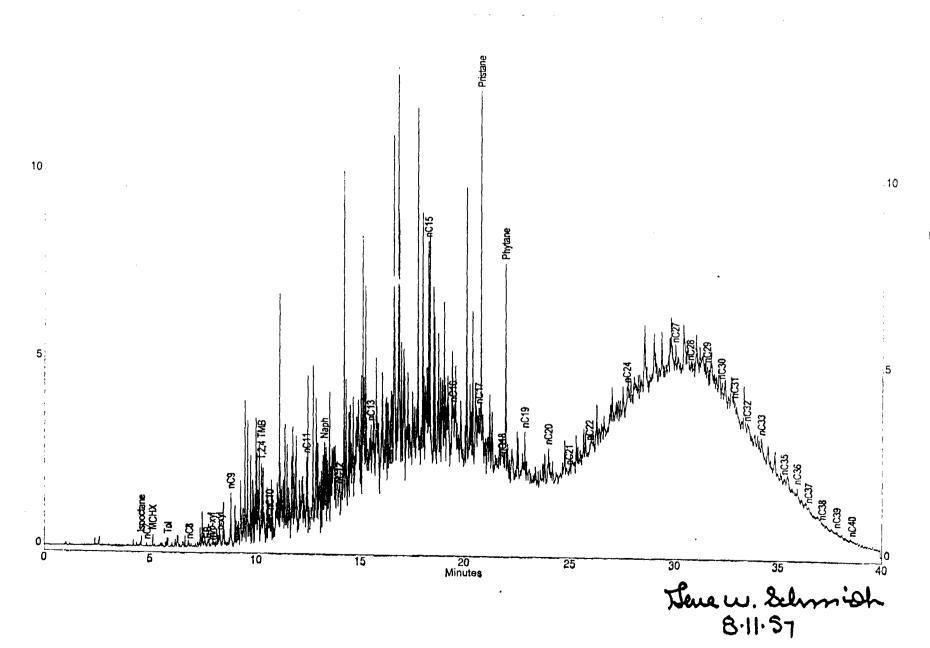

Channel A Results

Height Peak nC4 105 nC5 nC6 olefin a olefin b olefin c 0 2.4 DMP Bnz 0 Isooctane C nC7 MCHX 0 Tol ũ nC8 0 €₿ m/p-xyl 33 o-xyl 54 nC9 323 1,2,4 TMB 617 nC10 4462 nC11 15354 2898 Naph nC12 22728 nC13 29682 nC14 37773 nC15 36173 nC16 34091 nC17 31284 Pristane 22947 nC18 22351 Phytane 13149 nC19 16059 nC20 10115 nC21 5380 nC22 2354 nC23 1961 nC24 1671 nC25 1688 nC26 1653 nC27 1133 nC28 1005 nC29 514 526 467 443 460 502 nC30 nC31 nC32 nC33 nC34 0 163 35 72 76 nC35 nC36 nC37 nC38 nC39 nC40 38

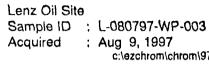

Lenz Oil Site Sample ID : Acquired : : L-080797-WP-002 : Aug 9, 1997

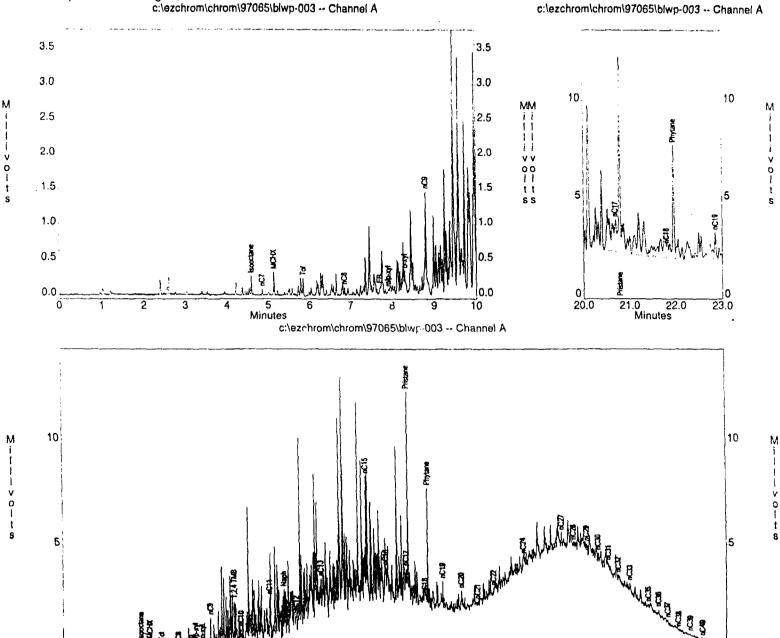
c:\ezchrom\chrom\97065\blwp-002 -- Channel A

Channel A Results


Peak	Height
nC4 iC5	0 0
nC5 nC6	0
olefin a	0
olefin b	Ö
olefin c	0
2,4 DMP	0
Bnz Isooctane	ე ე
nC7	0
MCHX	C
Tol	0
nC8 F8	0
m/p-xyl	46
o-xyl	67
nC9	391
1,2,4 TMB nC10	773
nC10	5339 18498
Naph	3441
n012	26077
nC13 nC14	36994
nC14	44027 43 380
nC16	41421
nC17	38685
Pristane	27389
nC18 Phytane	27902 15740
nC19	17980
nC20	12928
nC21	6770
nC22 nC23	3962 2477
nC24	1768
nC25	1283
nC26	1991
nC27	2572
nC28 nC2 9	2763 2594
nC30	2021
nC31	1744
nC32	1437
nC33	121 6 109 3
nC35	705
nC3 6	452
nC33 nC34 nC35 nC36 nC37 nC38	100
nC39	128 108
nC40	74

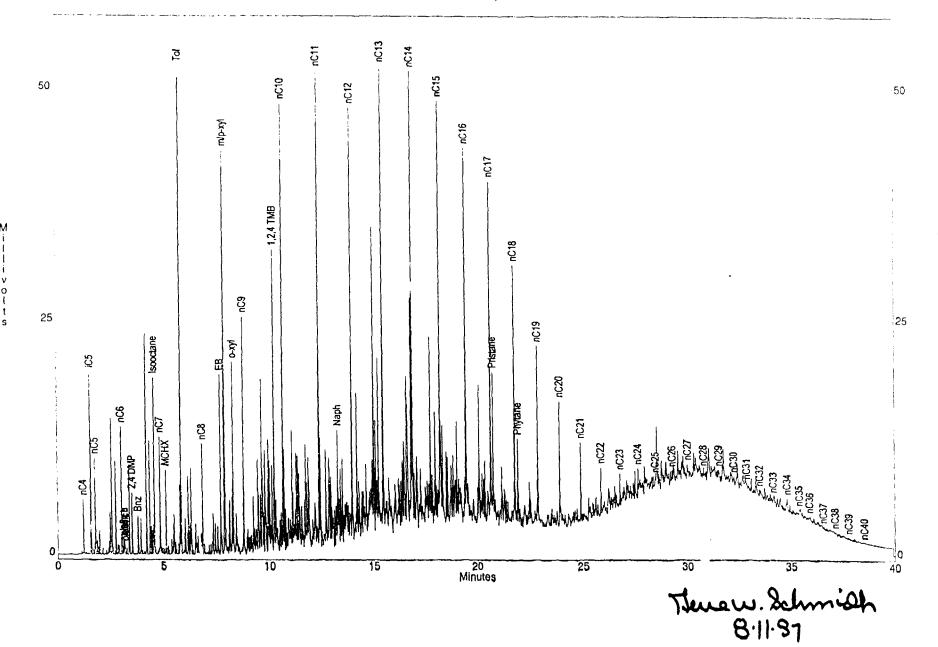
Lenz Oil Site


Sample ID : L-080797-WP-003 Acquired : Aug 9, 1997


c:\ezchrom hrom\97065\blwp-003 -- Channel A

Channel A Results

	ight
nC4	0
105	0
nC5	Ċ O
nC6	Ō
olefin a	Ō
olefin b	0
olefin c	0
2,4 DMP	0
Bnz *	Ç
Isooctane nC7	274 88
MCHX	332
Tol	258
nC8	123
EB	138
m/p-xyl	91
o-xy)	349
nC9	1471
1,2,4 TMB	2146
nC10	737
nC11	1940
Naph	2337
nC12 nC13	761 1357
nC14	0 ,000
nC15	6016
nC16	1625
nC17	1623
Pristane	10140
nC18	585
Phytane	5811
nC19	1347
nC20	972
nC21	213
nC22	350
nC23	0
nC24	730
nC25 nC26	G U
nC27	1500
nC2B	1199
nC29	1330
nC30	1049
nC31	710
nC32 nC33	163
nC33	505
nC34	٥
nC35	205
nC36	338
nC37	161
nC38 nC39	55
NC 30	93 73
	77
nC40	13
	13



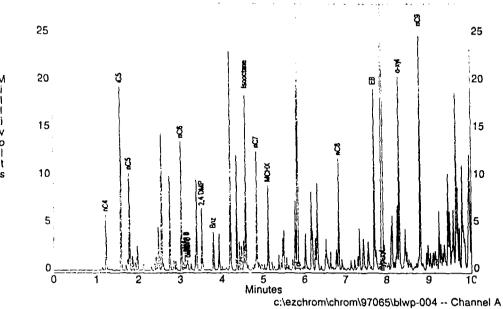
Minutes

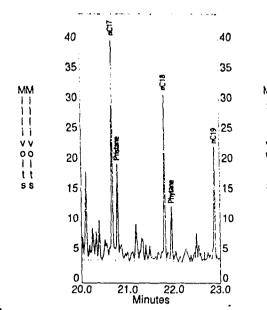
Lenz Oil Site

Sample ID : L-080797-WP-004 Acquired : Aug 9, 1997

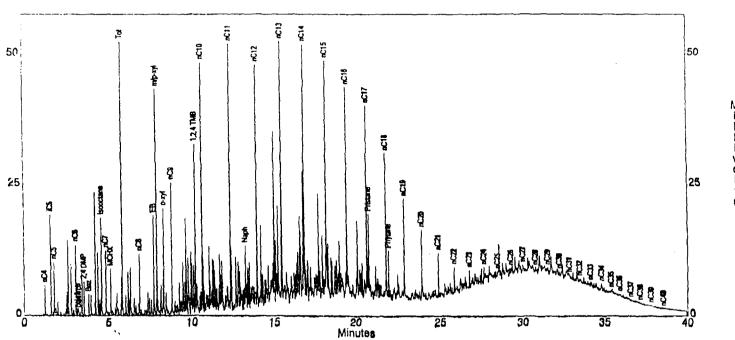
c:\ezchrom\chrom\97065\blwp-004 -- Channel A

Channel A Results

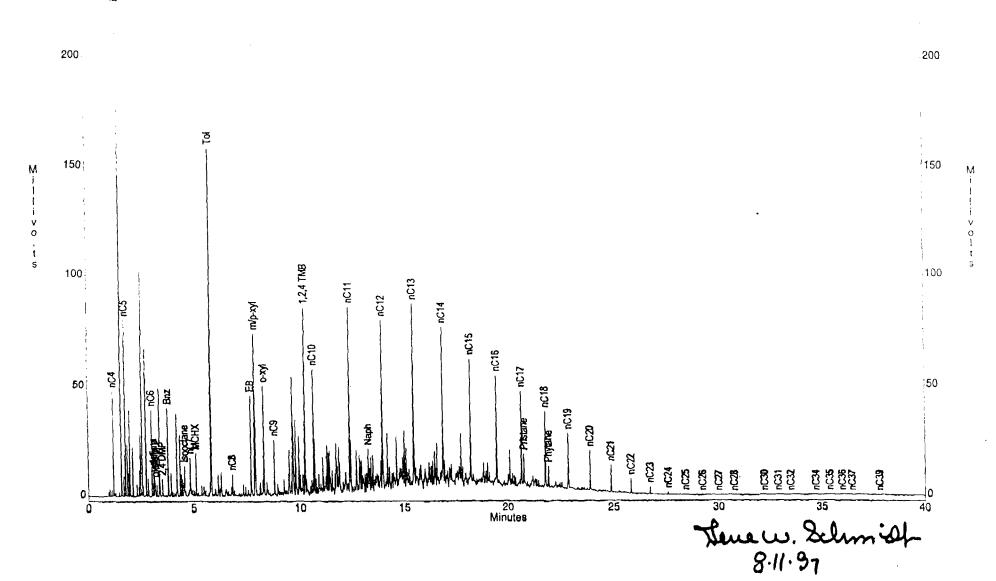

Peak	Height
Peak	5901 19466 77077 13685 1609 1610 1016 6599 4157 18884 12589 9055 52569 11894 19255 43350 25450 31833 48082 51217 12346 46469 50088 49299 45683 39818 36834 16219 27713 9218 18856 13355 84688 5180 3446 3098 1062 1486 1461 1050 1019 1097 1011 963 872 1372 731 493 107 231 60 655


Lenz Oil Site Sample ID : L-080797-WP-004

Acquired


: Aug 9, 1997 c:\ezchrom\chrom\97065\blwp-004 -- Channel A

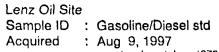
c:\ezchrom\chrom\97085\blwp-004 -- Channel A

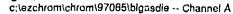

Lenz Oil Site

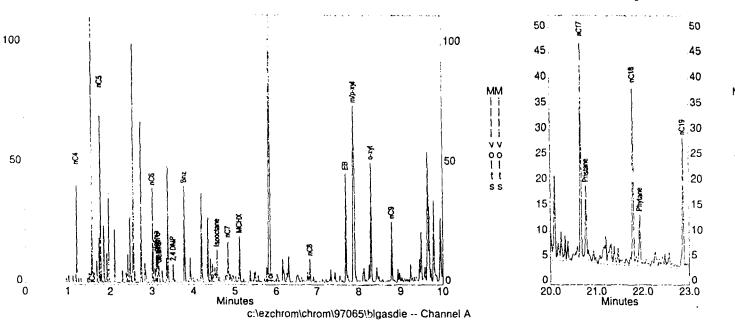
Sample ID : Gasoline/Diesel std

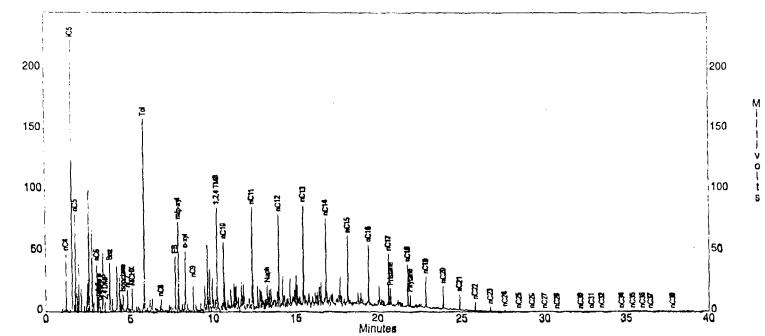
Acquired: Aug 9, 1997

c:\ezchrom\chrom\97065\blgasdie -- Channel A


Š.

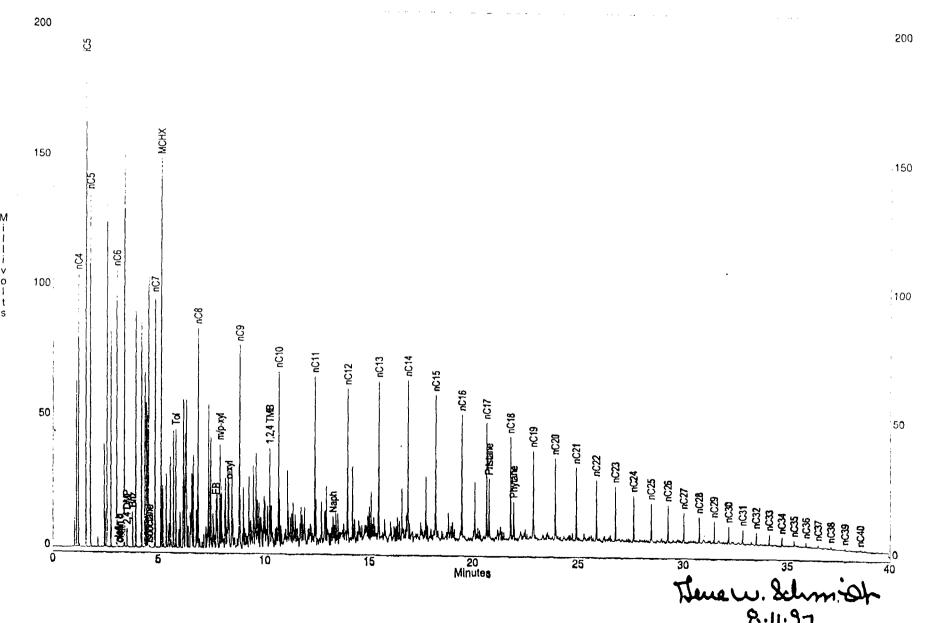

c:\ezchrom\chrom\97065\blgasdie -- Channel A


Peak Height nC4 47975 105 223703 nC5 80075 nC6 39506 olefin a 11987 olefin b 11232 alefin c 7142 2,4 DMP 7840 Bnz 40387 Isooctane 13788 nC7 15871 MCHX 19624 Tol 158533 nC8 10045 ЕВ 45786 m/p-xyl 73872 o-xyl 50163 nC9 25747 1,2,4 TMB 84155 nC10 56944 nC11 84321 Naph 19810 nC12 77188 nC13 83562 nC14 73078 nC15 58580 nC16 50862 nC17 42836 Pristane 14659 nC18 35416 Phytane 10276 nC19 25761 nC20 18438 nC21 12546 nC22 6944 nC23 3312 nC24 1257 nC25 401 nC26 154 nC27 64 nC28 36 nC29 0 nC30 28 nC31 43 54 nC32 nC33 nC34 47 nC35 72 nC36 63 78 0 38 Ç nC37 nC38 nC39 nC40

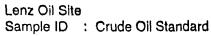


М

v 0 1 t s

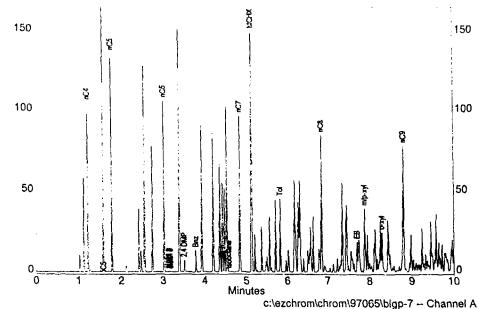


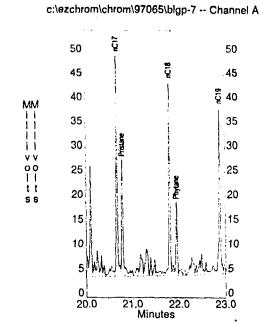
Lenz Oil Site

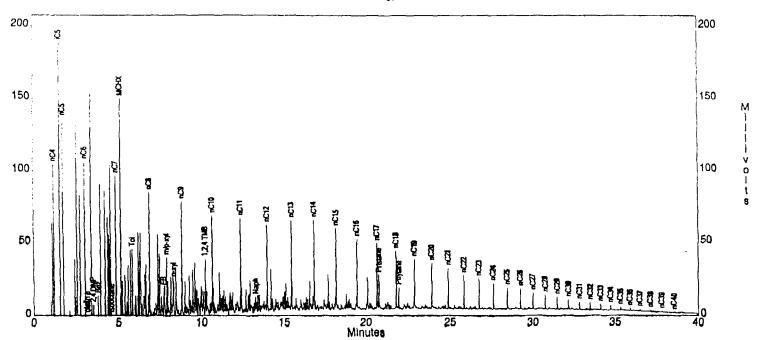

Sample ID : Crude Oil Standard

Acquired : Aug 9, 1997

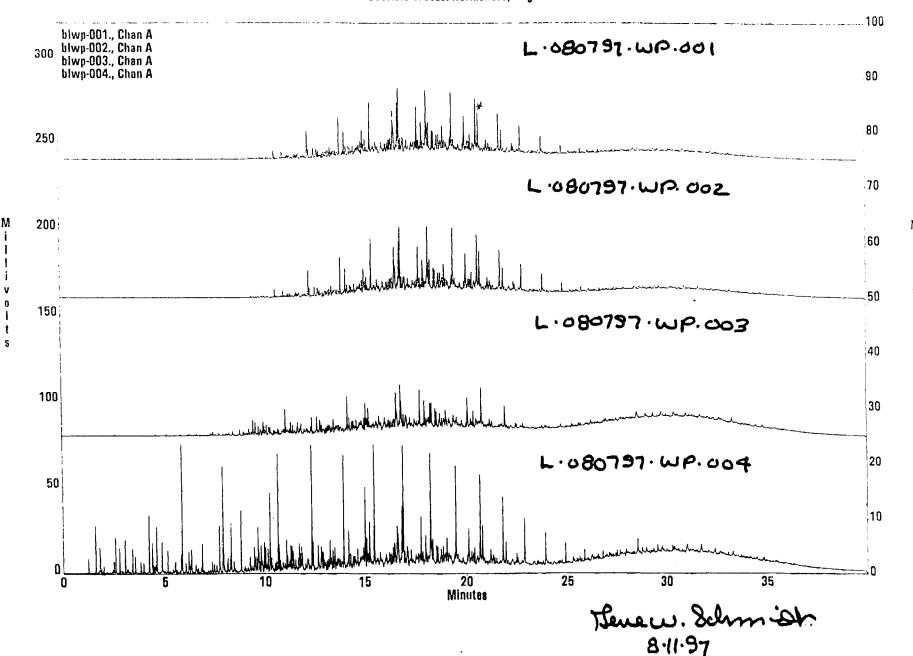
c:\ezchrom\chrom\97065\blgp-7 -- Channel A

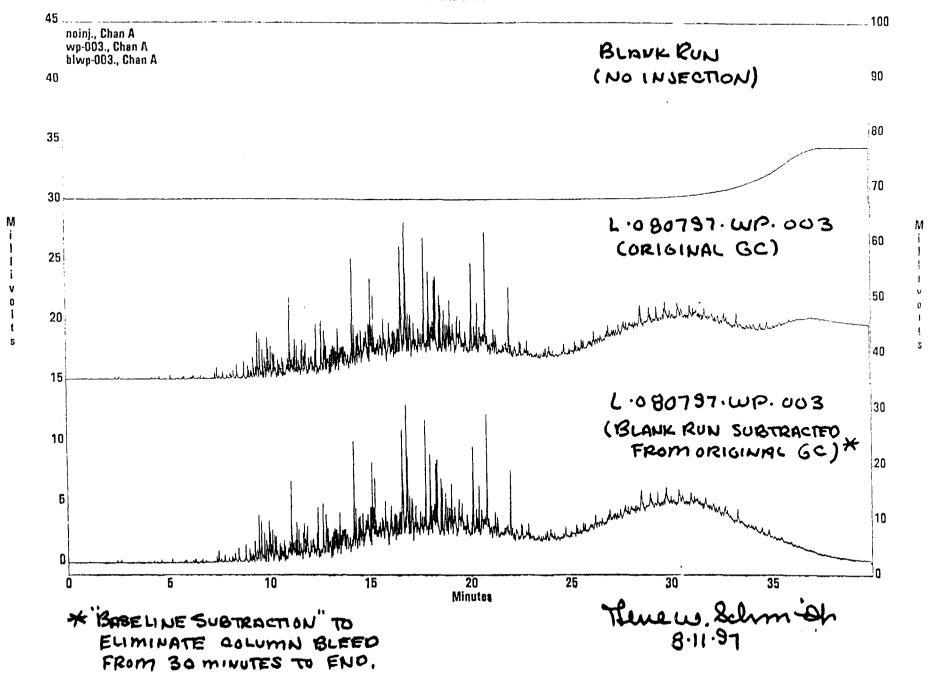



Channel A Results

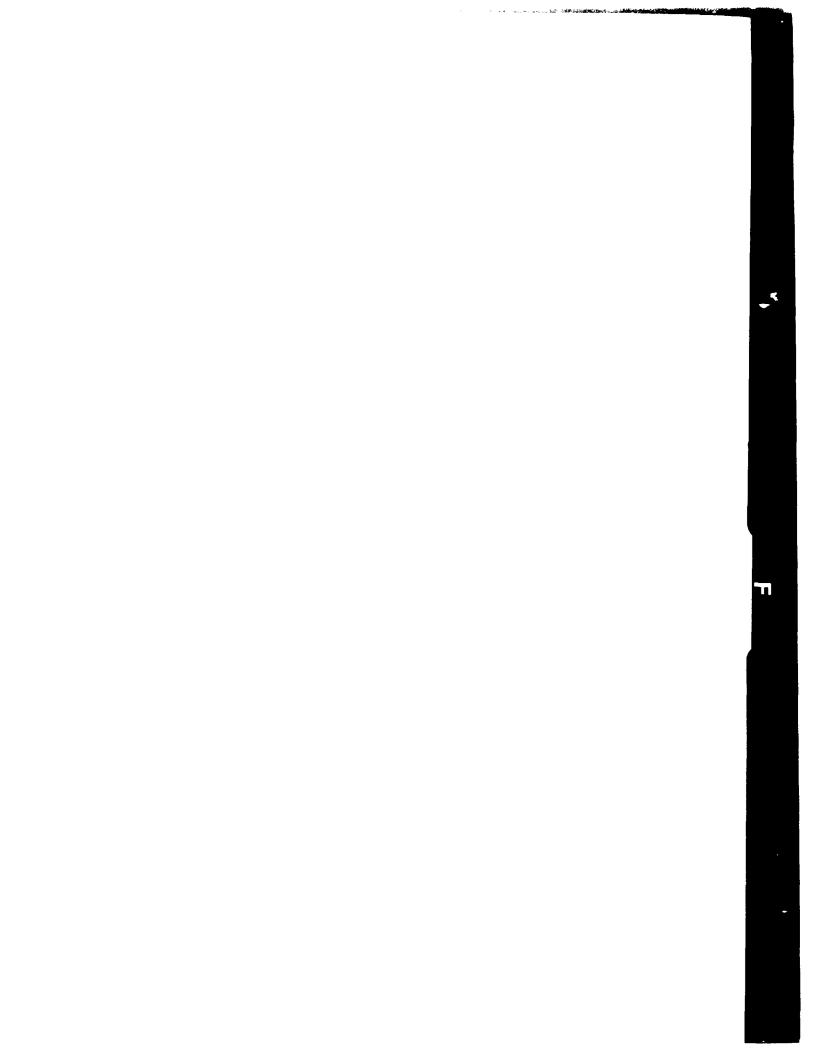


Acquired





Overlaid Traces: Normalized, Aligned



Lenz Oil Site	:			,											
TGI Job 97065															
Peak Heights	The second secon														
	1	:						i							
Sample Id	nC4	IC5	nC5	nC6	olefin a	olefin b	olefin c 2	4 DMP E	3nz	Isooct.	nC7	мснх	Tol .	nC8	EB
L-080797-WP-001	0	0.	0	Ò	0	0	0;	0	0	0,	0	0,	0	0	0
L-080797-WP-002	0	0	0	0	0	0	0	Ο _Ι	0	0	0	0	0	0	0
L-080797-WP-003	0	0	0	0	0	0	0	0	0,	274	88	332	258	123	138
L-080797-WP-004	5901	19466	7077	13685	1609	1610	1016	6599	4157	18884	12589	9055	52569	11894	19255
Gasoline/Diesel std		2E+05	80075	39506	11987	11232	7142	7840	0387	13788	15871	19624	2E+05	10045	45786
Crude Oil Standard	1E+05	2E+05	1E+05	1E+05	313	235	100	7069	3524	215	96628	1E+05	45331	84697	18678

										·												
ì			•		•								• • • • • • • •				•		•	**		
							·				-		:	!		~	<u></u>					
							!															
		- 00	4.0.4.7140	-040	-014	A1 L	-040	040	-044	045	-040	-047	Dela	-010		-010	-000	-004		-000	-004	005
m/p-xyl	o-xyl	nC9	1,2,4 TMB	nuiv	null	wapn	nC12	nC13	nC14	nC15	nC16	nC17	Pris.	nC18	Pny.	no 19	nC20	nC21	nC22	nC23	nC24 .	nC25
33	54	323																5380	2954	1961	1671	1688
46	67	391	773	5339	18498	3441	26077	36994	44027	43380	41421	38685	####	27902	15740	17980	12928	6770	3962	2477	1768	1283
91	349	1471	2146	737	1940	2337	761	1357	0	6016	1625	1623	####	585	5811	1347	972	213	350	0	730	0
43350	20543	25450	31833	48082	51217	12346	46469	50088	49299	45683	39818	36834	####	27713	9218	18856	13365	8468	5180	3446	3098	1062
73872	50163	25747	84155	56944	84321	19810	77188	83562	73078	58580	50862	42836	####	35416	10276	25761	18438	12546	6944	3312	1257	401
39536	24412	78148	36511	67317	64261	10986	59649	61125	61435	56312	48716	45456	####	39859	14930	34145	31216	27854	####	####	####	####

		- *-*	*****************************	- 					,									
, .								.							-			
						,			i	i	:	:			Area 0-	Area 0-25	Area 0-40	
nC26	nC27	nC28	nC29	nC30	nC31 i	nC32	nC33	nC34	nC35	nC36	nC37	nC38	nC39	nC40	11.5 min	min	min	
1653	1133	1005	514	526	467	443	460	502	0	163	36	72	76	38	72005	5107122	7749856	
1991	2572	2763	2594	2021	1744	1437	1216	1093	705	452	100	128	108	74	88946	6178143	9987827	
0	1500	1199	1330	1049	710	163	505	0	205	338	161	55	93	73	168719	2330381	4967657	
1486	1461	1050	1019	1097	1011	963	872	1372	731	493	107	231	60	55	1251213	5782551	10776516	
154	. 64	36	0	28	43	54	0	47	72	63	78	0	38	0	2836016	8903638	9218676	
####	####	####	8561	6635	5535	4951	4259	3335	2288	1896	1292	1087	802	612	4658749	10289230	13806590	

Lenz Oil Site									!					
TGI Jcb 97065														
Peak Heights		,	•		, ,,						• •			
	nC17/	nC5/	olefins/	olefins/	isooctane/	benz/	MCHx/		nC410/		Area %	Area % C10.5 -	Area %	Total
Sample Id	pris	m-p xyl	nC6	2,4DMP	2,4DMP	2,4DMP	nC7	toi.	:nC1125	1102640	<c10.5< td=""><td>C22.1</td><td>>C22.1</td><td>Area %</td></c10.5<>	C22.1	>C22.1	Area %
L-080797-WP-001	1.36	0.00	,#DIV/01	#DIV/0!	#DIV/0!	#DIV/01	#DIV/01	#DIV/0!	0.02	37.99	0.93	64.97	34.10	100.00
L-080797-WP-002	1.41	0.00	#DIV/01	#DIV/01	#DIV/01	#DIV/01	#DIV/0!	#DIV/0I	0.02	17.06	0.89	60.97	38.14	100.00
L-080797-WP-003	0.16	0.00	#DIV/01	#DIV/0I	#DIV/01	#DIV/01	3.77	0.00	0.14	2.37	3.40	43.51	53.09	100.00
L-080797-WP-004	2.27	0.16	0.31	0.64	2.86	0.63	0.72	0.08	0.31	33.36	11.61	42.05	46.34	100.00
Gasoline/Diesel std	2.92	1.08	0.77	3.87	1.76	5.15	1.24	0.25	0.48	848.60	30.76	65.82	3.42	100.00
Crude Oil Standard	1.92	3.44	0.01	0.09	0.03	1.91	1.55	0.30	1.11	7.84	33.74	40.78	25.48	100.00

APPENDIX F IEA ANALYTICAL REPORT

SAMPLE KEY

LENZ OIL SITE LEMONT, ILLINOIS

	Date	Time	
CRA Sample Number	Collected	Collected	Sample Source
L-080797-WP-001	08/07/97		LNAPL from William's Well
L-000/9/-WF-001			UNALL from william's well
L-080797-WP-002	08/07/97	8:40	LNAPL from William's Well
L-080797-WP-003	08/07/97	14:11	LNAPL from MW-5S
L-080797-WP-004	08/07/97	14:50	LNAPL From P-19
S-090297-WP-005	09/02/97	11:40	Soil From SB-2; 4 TO 6 feet bgs
S-090397-WP-006	09/03/97	10:30	Soil From SB-8; 2 TO 4 feet bgs
GW-091097-KD-007	09/10/97	9:12	Groundwater From MW-3S
GW-091097-KD-008	09/10/97	10:05	Groundwater From MW-6S
GW-091097-KD-009	09/10/97	11:05	Groundwater From P-28
GW-091097-KD-010	09/10/97	12:05	Groundwater From P-29
GW-091097-KD-011	09/10/97	12:15	Duplicate Groundwater From P-28
GW-091097-KD-012	09/10/97	13:45	Groundwater From P-30

American Environmenta' Network, Inc.

126 West Center Ct. Schaumburg, IL 60195 847-705-0740 847-705-1567 fax

Rugust 26, 1997

Conestoga-Rovers Steve Day 3615 W. Bryn Mawr Avenue

Chicago, IL 60631

Dear Steve Day:

Please find enclosed the analytical results of the samples received at our laboratory on August 08, 1997. This report contains sections addressing the following information at a minimum:

-Definitions

-Analytical Results

-Analytical Methodology

-Chain-of-custody

Copies of this analytical report and supporting data are maintained in our files for three years; samples are retained for two weeks unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact J Dowse at (800) 933-2580 for any additional information. Thank you for unlizing our services, we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Sincerely

Larry D. Lewis

Director of Operations

IEA-Illinois / American Environmental Network

Sample Summary

IEA-Illinois Laboratory ID Client ID

L72971919-001	L-080797-WP-001
L72971919-002	L-080797-WP-002
L72971919-003	L-080797-WP-003
L72971919-004	L-080797-WP-004

Client Name: <u>Conestoga-Rovers</u> IEA Project #: <u>L72971919</u> Client Project ID: <u>Lenz Oil Site</u>

PROJECT NARRATIVE

GCMS Volatiles Analysis

Samples were analyzed at the lowest possible dilution due to high levels of nontarget compounds.

IEA Job#: L72971919

Project ID: LENZ OIL SITE

Matrix: Oil
Method: 8240/8260

EPA Target Compound List (TCL) GCMS Volatiles Analysis µg/Kg

<u> </u>		·	,			,
Dilution Factor	500	500	500	100000	1	
Method Blank		VO081897	VO081897	VO082197	VO081897	
	L-080797-	L-080797-	L-080797-	L-080797-	Method	
Client ID	WP-001	WP-003	WP-004	WP-004	Blank	PQL
Analyte Lab ID	001	003	004	004 DL	VO081897	
Chloromethane	UD	UD	UD	UD	U	5
Bromomethane	UD	UD	UD	UD	U	5
Vinyl Chloride	UD	UD	UD	UD	U	5
Chloroethane	UD	UD	23000	UD	U	5
Methylene Chloride	UD	UD	UD	UD	Ū	5
Acetone	5800	UD	UD	UD	Ŭ	10
Carbon Disulfide	UD	UD	UD	UD	U	5
1,1-Dichloroethene	UD	UD	4200	UD	U	5
1,1-Dichloroethane	UD	UD	120000 E	UD	U	5
cis-1,2-Dichloroethene	· UD	UD	320000 E	UD	Ū	5
trans-1,2-Dichloroethene	UD	UD	UD	UD	U	5
Chloroform	UD	UD -	UD	UD	U	5
1,2-Dichloroethane	UD	UD	UD	UD	U	5
2-Butanone	UD	UD	UD	UD	U	10
1,1, 1-Trichloroethane	UD	UD	170000 E	UD	Ü	5
Carbon Tetrachloride	UD	UD	UD	UD	U	5
Bromodichloromethane	UD	UD	UD	UD	Ü	5
1,2-Dichloropropane	UD	UD	5500	UD	U	5
Trans-1,3-dichloropropene	UD	UD	UD	UD	U	5
Trichloroethene	UD	UD	UD	UD	Ü	5
Dibromochloromethane	UD	UD	UD	UD	U	5
1,1,2-Trichloroethane	UD	UD	UD	UD	Ū	5
Benzene	UD	UD	240000 E	UD	U	5
cis-1,3-Dichloropropene	UD	UD	UD	UD	Ü	5
Bromoform	UD	UD	UD	UD	U	5
4-Methyl-2-Pentanone	UD	UD	UD	UD	U	10
2-Hexanone	UD	UD	UD	UD	U	10
Tetrachloroethene	UD	UD	8400	UD	U	5
1,1,2,2-Tetrachloroethane	UD	UD	UD	UD	Ü	5
Toluene	UD	UD	1800000 E	3700000	U	5
Chlorobenzene	UD	UD	11000	UD	U	5
Ethylbenzene	UD	6900	710000 E	1400000	Ü	5
Styrene	UD	UD	UD	UD	Ü	5
Total Xylenes	4700	29000	3400000 E	6400000	U	10
Date Sampled	8/7/97	8/7/97	8/7/97	8/7/97	0(10/07	
Date Analyzed	8/18/97	8/18/97	8/18/97	8/21/97	8/18/97	

PQL = Practical Quantitation Limit

To obtain the sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

Herrix vonestoga kom:
IEA Job#: L72971919
Project ID: LENZ OIL SITE

Matrix: Oil
Method: 8240/8260

EPA Target Compound List (TCL) GCMS Volatiles Analysis µg/Kg

-				
Dilution Factor	11			
Method Blank				•
Clima ID	Method			DOI
Client ID	Blank	 		PQL
Analyte Lab ID	VO082197			
Chloromethane	U			5
Bromomethane	U			5
Vinyl Chloride	U			5
Chloroethane	U			5
Methylene Chloride	U	 		5
Acetone	U	 		10
Carbon Disulfide	U	 		5
1,1-Dichloroethene	U			5
1,1-Dichloroethane	U			5
cis-1,2-Dichloroethene	U			5
trans-1,2-Dichloroethene	Ū			5
Chloroform	U			5
1,2-Dichloroethane	Ū			5
2-Butanone	Ū			10
1,1, 1-Trichloroethane	U		1	5
Carbon Tetrachloride	U		7	5
Bromodichloromethane	U			5
1,2-Dichloropropane	Ū			5
Trans-1,3-dichloropropene	Ū			5
Trichloroethene	U			5
Dibromochloromethane	U			5
1,1,2-Trichloroethane	U			5
Benzene	U			5
cis-1,3-Dichloropropene	U			5
Bromoform	U			5
4-Methyl-2-Pentanone	U			10
2-Hexanone	U			10
Tetrachloroethene	U			5
1,1,2,2-Tetrachloroethane	U			5
Toluene	U			5
Chlorobenzene	U			5
Ethylbenzene	U			5
Styrene	U			5
Total Xylenes	U			10
Date Sampled			 	
Date Analyzed	8/21/97		 	

PQL = Practical Quantitation Limit

To obtain the sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

FORM II VOLA TILE ORGANIC SURROCATE RECOVERY

Lab Name : IEA, Inc.

Matrix : (soil/water) Oil

Client Name : Conestoga Rovers

Method No. : 8240/8260

		S1	S2	S3	Other	TOT
	Sample No.	(DCE) #	l .	(BFB) #	h	OUT
01	VO081897	92%	96%	89%	Ì	0
02	QCCK081897	95%	95%	102%		0
03	VO082197	97%	97%	87%		0
04	QCCK082197	96%	97%	98%		0
05	L72971919-001	99%	98%	92%		0
06	L72971919-003	93%	106%	120%		0
07	L72971919-004	102%	116%	119%		0
08	L72971919-004DL	99%	98%	84%		0
09	L72971953-001MS	93%	94%	105%		0
10	L72971953-001MD	97%	95%	99%		0
11[
12						
13						
14						
15						
16						
17						
18						
19						
20[
21						
22						
23						
24						
25						
26						
27						
28						
29						
30					l	

	QC Limits
S1 (DCE) = 1,2-Dichloroethane-d4	70-121%
S2 (TOL) = Toluene-d8	81-117%
S3 (BFB) = Bromofluorobenzene	74-121%
Other= Not Used	

#--Column used to flag recovery values

*--Value outside QC Limits

D--Surrogates diluted out

LOnveil ORGANIC DE CHROLL DO V

Lab Name: IEA, Inc.	Sample No.: VO082197
Matrix : (soil/water) Soil	Method No.: 8240B/8260A

	Spike	Sample	MS	MS		QC
	Added	Concentration	Concentration	%	- }	Limits
COMPOUND	(µg/Kg)	(μg/Kg)	(µg/Kg)	Rec	#	Rec.
1,1-Dichloroethene	50	0	54	108%		59-172
Trichloroethene	50	0	50	100%		62-137
Benzene	50	0	53	106%		66-142
Toluene	50	0	54	108%		59-139
Chlorobenzene	50	0	54	108%		60-133

#--Column to be used to flag recovery and RPD values with an asterisk *--Values outside of QC Limits

Spike Recovery :	0	out of	5	outside limits
Comments:				

FORM II) ORGANIC QC CHECK FORM

Lab Name: IEA, Inc.	Sample No.: VO081897
Matrix: (soil/water) Soil	Method No.: 8240B/8260A

	Spike	Sample	MS	MS		QC
	Added	Concentration	Concentration	%		Limits
COMPOUND	(μg/Kg)	(μg/Kg)	(µg/Kg)	Rec	#	Rec.
1,1-Dichloroethene	50	0	54	108%		59-172
Trichloroethene	50	0	55	110%		62-137
Benzene	50	0	51	102%		66-142
Toluene	50	0	51	102%		59-139
Chlorobenzene	50	0	54	108%		60-133

#Column to be used to flag recovery and RPD values with an as	sterisl	ris	ri:	·i	i	Ĺ	U	9	S	ċ	d	1	Ċ	9	1	U	ď	ľ	ľ	l	l	1
---	---------	-----	-----	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Spike Recovery :	0	out of	5	outside limits
Comments:				

^{*--}Values outside of QC Limits

Spike Recovery and RPD Juniorly Names of the

Method : K:\CHEMSTN\MSO\METHODS\FCUSOIL M
Title : Method 8240B/8260A in Soil, Calib on 8/11/97

Last Update : Mon Aug 11 11:52:03 1997

Response via : Initial Calibration

Non-Spiked Sample: MSO5478.D

Spike Spike

Duplicate Sample Sample ______

File ID: MSO5465.D Sample: L72971953-001ms Acq Time: 18 Aug 97 15:43 MS05467.D L72971953-001msd 18 Aug 97 17:02

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
1,1-dichloroethene benzene trichloroethene oluene chlorobenzene	0.0 0.0 0.5 0.7 0.3	50 50 50 50 50	51 49 50 51 51	52 52 55 53 52	103 99 99 101 102	103 103 109 104 103	0 4 10 3 1	22 24 21 21 21 21	59-172 66-142 62-137 59-139 60-133

- Fails Limit Check

TCLSOIL.M Tue Aug 19 13:36:39 1997

CF		-ROVI	ERS & ASSOC	MATES	SHIPPED TO (L	aborator	y Na	me)	I	E	Д				
8615	W. B	ryn Mo	awr Avenue)202 - 2022	REFERENCE NU									·····	
CH	IN C	TE C	CUSTODY)380-9933 DECODD	REFERENCE NU	MBER:		PRO	OJECT ことか	NAMI Side	: <u>/</u> /	1-1-	- T	- Rec	wif 8/7/71
	LER'S	/ //					S	DAI	RAMET		$\frac{\alpha}{\gamma}$			777	7
SIGNA	TURE:	Wiet	w// Kel	NAME	Welter J. Ro	hon	PR	' ^'			//	'//	//		
SEQ. No.	DATE	TIME		SAMPLE No).	SAMPLE MATRIX	No.	1	V7/		<u>//</u>				REMARKS
1	<u>8/7/97</u>	0840	L-080797-	WP-001		0;	1	X	<i>k</i> 7						
2		1015	L-080797- L-080797-	WP-002		0:1	1.	×	Anch	100	>	my 6	e		
4	1	1450	L-080797-	WP-004		0:1	1	Ŷ						-	
 						ļ	-							_	
-							 	-		-				_	
														_	
							-								
						 				-			-	-	
						1	1	-					+++		
				TOTAL	NUMBER OF COL										
RELI	NQUISH	IED BY	1: Water Pal		DATE: 8/1/ TIME: 16	97 RI	ECEIV	ED	BY:			· · · · · ·			DATE: TIME:
RELI 2	NQUISH	ED B	Y:		DATE: TIME:	RI	ECEIV	ED	BY:						DATE: TIME:
	NQUISH	IED B	Y:		DATE: TIME:	RI	ECEIV	'ED	BY:						DATE: TIME:
	HOD O	F SHII	PMENT:				AIR	BILL	No.						
Whit Yell			lly Executed ceiving Labor	/	SAMPLE JEAM:	~_		R	ECEIV	ED FO	R LA	BORA	TORY	BY:	2776
Pink		-Sh	ipper Copy mpler Copy	2.0., Copy	L. Pund			- D	ATE:_		T	IME:_			2//0

American Environmental Network

126 West Center Court • Schaumburg, IL 60195 • (847) 705-0740 • Fax (847) 705-1567 • 1-800-933-2580

September 16, 1997

Conestoga-Rovers Steve Day 8615 W. Bryn Mawr Avenue

Chicago, IL 60631

Dear Steve Day:

Please find enclosed the analytical results of the samples received at our laboratory on September 05, 1997. This report contains sections addressing the following information at a minimum:

-Definitions

-Analytical Results

-Analytical Methodology

-Chain-of-custody

IEA Project#: L72972129

Client Project: LENZ OIL SITE

Purchase Order#:

IEA Quote#:

Site:

LENZ OIL SITE

Copies of this analytical report and supporting data are maintained in our files for three years; samples are retained for two weeks unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact Dowse at (800) 933-2580 for any additional information. Thank you for utilizing our services, we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Sincerely

Larry D. Lewis

Director of Operations

IEA-Illinois / American Environmental Network

Sample Summary

IEA-Illinois Laboratory ID Client ID

L72972129-001 S-090297-WP-005 L72972129-002 S-090397-WP-006

Client Name: <u>Conestoga-Rovers</u>
ILA Project #: <u>L72972129</u>
Client Project ID: <u>Lenz Oil Site</u>

PROJECT NARRATIVE

GCMS Volatiles Analysis

Sample S-090297-WP-005 was analyzed twice and confirmed low internal standard/high surrogate recoveries due to matrix interference.

Client: Conestoga-Rovers
Project ID: LENZ OIL SITE
Site: LENZ OIL SITE

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972129-001	Method: 8260
Client ID: S-090297-WP-005	Matrix : SOIL

Compound	Result	PQL	Units	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
Vinyl Chloride	< 5	5	ug/Kg	1	9 / 2 /97	9/11/97
Bromomethane	< 5	5	ug/Kg	1	9 / 2/9 7	9/11/97
Chloroethane	< 5	5	ug/Kg	1	9 / 2/9 7	9/11/97
1,1-Dichloroethene	< 5	5	ug/Kg	i	9 / 2/9 7	9/11/97
Methylene Chloride	< 5	5	ug/Kg	1	9/ 2/97	9 /11/97
trans-1,2-Dichloroethene	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
1,1-Dichloroethane	< 5	5	ug/Kg	1	9/ 2/97	9 /11/9 7
cis-1,2-Dichloroethene	< 5	5	ug/Kg	i	9/ 2/97	9/11/97
Chloroform	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
1,1,1-Trichloroethane	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
Carbon Tetrachloride	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
Benzene	34	5	ug/Kg	1	9/ 2/97	9 /11/9 7
1,2-Dichloroethane	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
Trichloroethene	< 5	5	ug/Kg	1	9/ 2/97	9 /11/9 7
1,2-Dichloropropane	< 5	5	ug/Kg	1	9 / 2/97	9 /11/9 7
Bromodichloromethane	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
cis-1,3-Dichloropropene	< 5	5	ug/Kg	1	9/ 2/97	9 /11/97
Toluene	< 5	5	ug/Kg	1	9/ 2/97	9 /11/9 7
trans-1,3-Dichloropropene	< 5	5	ug/Kg	1	9/ 2/97	9 /11/9 7
1,1,2-Trichloroethane	< 5	5	ug/Kg	1	9/ 2/9 7	9/11/97
Tetrachloroethene	6	5	ug/Kg	1	9/ 2/97	9 /11/9 7
Dibromochloromethane	< 5	5	ug/Kg	1	9/ 2/9 7	9/11/97
Chlorobenzene	< 5	5	ug/Kg	1	9/ 2/97	9/11/97
Ethylbenzene	32	5	ug/Kg	1	9/ 2/9 7	9/11/97
Xylenes, Total	160	10	ug/Kg	1	9/ 2/9 7	9/11/97
Styrene	< 5	5	ug/Kg	1	9 / 2/9 7	9 /11/9 7
Bromoform	< 5	5	ug/Kg	1	9 / 2/9 7	9 /11/9 7
1,1,2,2-Tetrachloroethane	< 5	5	ug/Kg	1	9 / 2/9 7	9/11/97
Acetone	27	10	ug/Kg	1	9/ 2/97	9/11/97
Carbon Disulfide	< 5	5	ug/Kg	1	9/ 2/9 7	9 /11/9 7
2-Butanone	< 10	10	ug/Kg	1	9/ 2/97	9 /11/9 7
2-Hexanone	< 10	10	ug/Kg	1	9/ 2/97	9 /11/9 7
4-Methyl-2-Pentanone	< 10	10	ug/Kg	1	9/ 2/97	9/11/97

Note: Results are dry weight corrected

Client: Conestoga-Rovers
Project ID: LENZ OIL SITE
Site: LENZ OIL SITE

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972129-002	Method: 8260
Client ID: S-090397-WP-006	Matrix: SOIL

Compound	Result	PQL	Units	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
Vinyl Chloride	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
Bromomethane	< 5	5	ug/Kg	i	9/ 3/97	9/ 9/97
Chloroethane	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
1,1-Dichloroethene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Methylene Chloride	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
trans-1,2-Dichloroethene	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
1,1-Dichloroethane	< 5	5	ug/Kg	1	9 / 3/9 7	9 / 9/9 7
cis-1,2-Dichloroethene	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
Chloroform	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
1,1,1-Trichloroethane	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
Carbon Tetrachloride	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Benzene	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
1,2-Dichloroethane	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Trichloroethene	6	5	ug/Kg	1	9/ 3/97	9 / 9/ 97
1,2-Dichloropropane	< 5	5	ug/Kg	1	9/3/97	9 / 9/9 7
Bromodichloromethane	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
cis-1,3-Dichloropropene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Toluene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
trans-1,3-Dichloropropene	< 5	5	ug/Kg	i	9/ 3/97	9 / 9/9 7
1,1,2-Trichloroethane	< 5	5	ug/Kg	Ī	9/ 3/97	- 9 / 9/97
Tetrachloroethene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/97
Dibromochloromethane	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
Chlorobenzene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Ethylbenzene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Xylenes, Total	18	10	ug/Kg	1	9/ 3/97	9/ 9/97
Styrene	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Bromoform	< 5	5	ug/Kg	1	9/ 3/97	9/ 9/97
1,1,2,2-Tetrachloroethane	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
Acetone	20	10	ug/Kg	1	9/ 3/97	9 / 9/97
Carbon Disulfide	< 5	5	ug/Kg	1	9/ 3/97	9 / 9/9 7
2-Butanone	< 10	10	ug/Kg	1	9/ 3/97	9 / 9/9 7
2-Hexanone	< 10	10	ug/Kg	1	9/ 3/97	9 / 9/9 7
4-Methyl-2-Pentanone	< 10	10	ug/Kg	1	9/ 3/97	9 / 9/9 7

Note: Results are dry weight corrected

IEA Job#: L72972129

Project ID: LENZ OIL SITE

Method: 8260

$\label{eq:method-Blank-Report} \begin{tabular}{ll} Method Blank Report \\ EPA Target Compound List (TCL) \\ GCMS Volatiles Analysis \\ \mu g/L \end{tabular}$

<u></u>	,		, 	
Dilution Factor	1	1		
	Method	Method		
Client ID	ľ	Blank		PQL
Analyte Lab ID	VO090997	VO091197		
Chloromethane	U	U		5
Bromomethane	U	U		5
Vinyl Chloride	U	U	 	5
Chloroethane	Ū	U		5
Methylene Chloride	U	U		5
Acetone	U	U		10
Carbon Disulfide	U	Ü		5
1,1-Dichloroethene	U	Ū		5
1,1-Dichloroethane	Ū	U	 	5
cis-1,2-Dichloroethene	U	U		5
trans-1,2-Dichloroethene	U	Ū	 	5
Chloroform	U	U		5
1,2-Dichloroethane	U	U		5
2-Butanone	U	U		10
1,1, 1-Trichloroethane	U	Ŭ		5
Carbon Tetrachloride	U	Ŭ		5
Bromodichloromethane	U	U		5
1,2-Dichloropropane	U	Ü		5
Trans-1,3-dichloropropene	U	U		5
Trichloroethene	U	U		5
Dibromochloromethane	U	Ū		5
1,1,2-Trichloroethane	U	U		5
Benzene	U	Ŭ		5
cis-1,3-Dichloropropene	U	U		5
Bromoform	U	U		5
4-Methyl-2-Pentanone	U	U		10
2-Hexanone	U	U		10
Tetrachloroethene	U	U		5
1,1,2,2-Tetrachloroethane	U	U		5
Toluene	U	U		5
Chlorobenzene	U	U		5
Ethylbenzene	U	U		5
Styrene	Ŭ	U		5
Total Xylenes	U	U		10
Date Analyzed	9/9/97	9/11/97		
			 	

PQL = Practical Quantitation Limit

To obtain the sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

FORM B VOLATILE ORGANIC SURROGATE RESOVERY

Lab Name: AEN	Client Name: Conestoga Rovers
Matrix: (soil/water) Soil	Method No. : 8260

		S1		S2		S3		Other		TOT
	Samuela Na	(DCE)	#		#	(BFB)	#	Other	#	OUT
٠.	Sample No.		++	(TOL)	#		#		#	
01	VO090997	93%		96%		89%				0
02	QCCK090997	87%		99%		92%				0
03	VO091197	87%		96%		90%				0
04	QCCK091197	90%		95%		94%				0
05	L72972129-001	128%	*	83%		104%				1
06	L72972129-001RE	142%	*	78%	*	100%				2
07	L72972129-002	105%	_ [92%		103%				0
08	L72972129-002MS	101%		95%		115%				0
09	L72972129-002MD	99%	\Box	95%		136%	*			l
10									\neg	
11										
12										
13									\neg	
14		~	\neg						\neg	
15			一						\dashv	
16			7				\neg		\dashv	
17			一		_				\dashv	
18			7						\neg	
19			$\neg \dagger$		\dashv		_		十	
20			_			· · · · · · · · · · · · · · · · · · ·	_		\dashv	
21			\dashv		\dashv		寸		十	
22			_		_		_		十	
23		·	-1						_	
24			-+		寸		\dashv		\dashv	
25			\dashv		+		\dashv		-	
26			-+		-+		\dashv		十	
27			\dashv		+		-		\dashv	
28			\dashv		\dashv		-		\dashv	
29			\dashv		-+		-		+	
30			-+		+		-		+	
اناد										

S1 (DCE) = 1,2-Dichloroethane-d4	QC Limits 70-121%
S2 (TOL) = Toluene-d8	81-117%
S3 (BFB) = Bromofluorobenzene	74-121%
Other= Not Used	

- #--Column used to flag recovery values
- *--Value outside QC Limits
- D--Surrogates diluted out

S, the Econvery and RPD States, Report 1011

Method : K:\CHEMSTN\MSO\METHODS\TChSOIL A
Title : Method 8240B/8260A in Soil; Calls on 8/11/97
Last Update : Mon Aug 11 11:52:03 1997

Response via : Initial Calibration

Non-Spiked Sample: MSO5791.D

Spike Spike

Duplicate Sample Sample

-

MS05793.D L72972129-002msd File ID : MSO5792.D Sample : L72972129-002ms Acq Time: 9 Sep 97 19:22 9 Sep 97 20:02

Compound	Sample Conc	~	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
1,1-dichloroethene	0.0	50	51	47	101	94	8 2 4 2 6	22	59-172
benzene	0.4	50	53	52	106	103		24	66-142
trichloroethene	5.1	50	56	54	102	98		21	62-137
oluene	0.7	50	51	50	100	98		21	59-139
chlorobenzene	0.4	50	51	54	101	107		21	60-133

- Fails Limit Check

TCLSOIL.M Wed Sep 10 08:30:31 1997

FORM FI. ORGANIC QC CHECK FORM

Lab Name: IEA, Inc.	Sample No.: VO090997
Matrix : (soil/water) Soil	Method No.: 8240B/8260A

	Spike	Sample	MS	MS		QC
į	Added	Concentration	Concentration	%]	Limits
COMPOUND	(μg/Kg)	(μg/Kg)	(μg/Kg)	Rec	#	Rec.
1,1-Dichloroethene	50	0	50	100%		59-172
Trichloroethene	50	0	59	118%		62-137
Benzene	50	0	52	104%		66-142
Toluene	50	0	55	110%		59-139
Chlorobenzene	50	0	54	108%		60-133

#Column to be us	sed to flag recover	v and RPD values	with an asterisk

*--Values outside of QC Limits

Spike Recovery : _	0	out of	5	outside limits
Comments:				
			·	
_				
_				
_				
_				

FORM III ORGANIC QU'CHECK FORM

Lab Name: IEA, Inc.	Sample No.: VO091197
Matrix : (soil/water) Soil	Method No.: 8240B/8260A

	Spike	Sample	MS	MS		QC
	Added	Concentration	Concentration	%		Limits
COMPOUND	(μg/Kg)	(μg/Kg)	_(μg/Kg)	Rec	#	Rec.
1,1-Dichloroethene	50	0	53	106%		59-172
Trichloroethene	50	0	59	118%		62-137
Benzene	50	0	52	104%		66-142
Toluene	50	0	54	108%		59-139
Chlorobenzene	50	0	52	104%		60-133

#Column to be used to flag recovery and RPD values with an asteris	#Column to be use	d to flag recover	y and RPD values	with an asterisk
--	-------------------	-------------------	------------------	------------------

Spike Recovery :	0	out of	5	outside limits
Comments:				
_				

^{*--}Values outside of QC Limits

CRA CONESTOGA-ROVERS & ASSOCIATES 10400 West Higgins Road - Suite 103		aboratory	atory Name): TEA			
10400 West Higgins Road - Sulte 103 Rosemont, IL 60018 (708)299-9933 CHAIN OF CUSTODY RECORD	4 .	MBER:		PROJECT NAME: Lenz Oil Site		
		ochan	OF INERS	PARAMETERS		
SEQ. DATE TIME SAMPLE NO		SAMPLE MATRIX	CONTA	REMARKS		
01 9/2/97 11:40 S-090297-WP-C 02 9/3/97 10:30 S-090397-WP-C	005	So:1 So:1		X		
TOTAL	NUMBER OF CON		2			
RELINQUISHED BY:	DATE: 9/4/ TIME: 2/2	97 RE <i>ου</i> 2		VED BY: DATE: 9/4/97 TIME: 21:00		
RELINQUISHED BY:	DATE: 7/1 TIME: 9/2	ν 3		DATE: 9-5-97 TIME: 0900		
RELINQUISHED BY.	DATE: 9-5- TIME: 123			VED BY: DATE: TIME:		
METHOD OF SHIPMENT: Lab Pick) P		AIR	BILL No. NA		
White —Fully Executed Copy Yellow —Receiving Laboratory Copy Pink —Shipper Copy Goldenrod —Sampler Copy	SAMPLE JEAM: Le Pochron			RECEIVED FOR LABORATORY BY: DATE: 9 5 92 TIME: 13'00 No Onice		

American Environmental Network

126 West Center Court • Schaumburg, IL 60195 • (847) 705-0740 • Fax (847) 705-1567 • 1-800-933-2580

September 16, 1997

Conestoga-Rovers Steve Day 8615 W. Bryn Mawr Avenue

Chicago, IL 60631

Dear Steve Day:

Please find enclosed the analytical results of the samples received at our laboratory on September 11, 1997. This report contains sections addressing the following information at a minimum:

-Definitions

-Analytical Results

-Analytical Methodology

-Chain-of-custody

IEA Project#: L72972158

Client Project: 6711

Purchase Order#:

IEA Quote#:

Site:

LENZ OIL

Copies of this analytical report and supporting data are maintained in our files for three years; samples are retained for two weeks unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this 'aboratory and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact
Dowse at (800) 933-2580 for any additional information. Thank you for usulizing our services, we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Sincerely

Larty D. Lewis

Director of Operations

IEA-Illinois / American Environmental Network

Sample Summary

IEA-Illinois Laboratory ID Client ID

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number:L72972158-001Method:8260Client ID:GW-091097-KD-007Matrix:WATER

Compound	Result	POL	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	1	9/10/97	9/12/97
Bromomethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Chloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9 /12/97
trans-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
cis-1,2-Dichloroethene	< 5	5	ug/L	Ĭ	9/10/97	9/12/97
Chloroform	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,1-Trichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Carbon Tetrachloride	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Benzene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Trichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloropropane	< 5	5	ug/L	1	9/10/97	9/12/97
Bromodichloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
Toluene	< 5	5	ug/L	1	9/10/97	9/12/97
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Tetrachloroethene	< 5	5	ug/L	1	9 /10/97	9/12/97
Dibromochloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Chlorobenzene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Ethylbenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Xylenes, Total	< 10	10	ug/L	1	9/10/97	9 /12/97
Styrene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Bromoform	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Acetone	< 10	10	ug/L	1	9 /10/ 97	9 /12/9 7
Carbon Disulfide	< 5	5	ug/L	1	9/10/97	9/12/97
2-Butanone	< 10	10	ug/L	1	9/10/97	9/12/97
2-Hexanone	< 10	10	ug/L	1	<i>9</i> /10/97	9 /12/9 7
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9/12/97

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

 Lab Sample Number:
 L72972158-004
 Method:
 8260

 Client ID:
 GW-091097-KD-008
 Matrix:
 WATER

Compound	Result	PQL	Units	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	1	9 /1 0 /9 7	9/12/97
Bromomethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Chloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9 /12/9 7
trans-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
cis-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9 /12/97
Chloroform	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,1-Trichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Carbon Tetrachloride	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Benzene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Trichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloropropane	< 5	5	ug/L	1	9 /10/9 7	9 /1 2 /9 7
Bromodichloromethane	< 5	5	ug/L	1	9/10/97	9 /1 2 /9 7
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
Toluene	< 5	5	ug/L	1	9/10/97	9/12/97
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Tetrachloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Dibromochloromethane	< 5	5	ug/L	1	9/10/97	9 /12/97
Chlorobenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Ethylbenzene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Xylenes, Total	< 10	10	ug/L	1	9/10/97	9 /12/97
Styrene	< 5	5	ug/L	1	9/10/97	9/12/97
Bromoform	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
Acetone	< 10	10	ug/L	Ī	9/10/97	9 /12/97
Carbon Disulfide	< 5	5	ug/L	t	9 /10/9 7	9/12/97
2-Butanone	< 10	10	ug/L	1	9/10/97	9/12/97
2-Hexanone	< 10	10	ug/L	1	9 /10/9 7	9/12/97
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9/12/97

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972158-005 Method: 8260
Client ID: GW-091097-KD-009 Matrix: WATER

Compound	Result	PQL	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	i	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	1	9/10/97	9/12/97
Bromomethane	< 5	5	ug/L	1	9 /10/9 7	9 /1 2 /9 7
Chloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9/12/97
trans-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
cis-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Chloroform	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1,1-Trichloroethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Carbon Tetrachloride	< 5	5	ug/L	1	<i>9</i> /10/97	9/12/97
Benzene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,2-Dichloroethane	< 5	5	$u_{\mathbf{E}}/\mathbf{L}$	1	9/10/97	9/12/97
Trichloroethene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,2-Dichloropropane	< 5	5	ug/L	1	9 /10/ 97	9 /12/9 7
Bromodichloromethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
Toluene	< 5	5	ug/L	1	9/10/97	9/12/97
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Tetrachloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Dibromochloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Chlorobenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Ethylbenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Xylenes, Total	< 10	10	ug/L	1	9/10/97	9/12/97
Styrene	< 5	5	ug/L	1	9/10/97	9/12/97
Bromoform	< 5	5	ug/L	1	9 /10/9 7	9 /12/97
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Acetone	< 10	10	ug/L	1	9/10/97	9/12/97
Carbon Disulfide	< 5	5	ug/L	1	9 /10/9 7	9 /1 2 /9 7
2-Butanone	< 10	10	ug/L	1	9/10/97	9/12/97
2-Hexanone	< 10	10	ug/L	1	9 /10/9 7	9 /12/9 7
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9 /12/9 7

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number:L72972158-006Method:8260Client ID:GW-091097-KD-010Matrix:WATER

						
Compound	Result	<u>PQL</u>	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	I	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Bromomethane	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
Chloroethane	< 5	5	ug/L	1	9 /10/97	9/12/97
1,1-Dichloroethene	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9 /12/9 7
trans-1,2-Dichloroethene	< 5	5	ug/L	I	9 /10/97	9 /12/9 7
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
cis-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Chloroform	< 5	5	ug/L	1	9 /10/97	9 /12/97
1,1,1-Trichloroethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Carbon Tetrachloride	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Benzene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Trichloroethene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,2-Dichloropropane	< 5	5	ug/L	1	9/10/97	9/12/97
Bromodichloromethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Toluene	< 5	5	ug/L	1	9/10/97	9/12/97
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Tetrachloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Dibromochloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Chlorobenzene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Ethylbenzene	< 5	5	ug/L	1	9/10/97	9 /12/97
Xylenes, Total	< 10	10	ug/L	1	9/10/97	9/12/97
Styrene	< 5	5	ug/L	I	9/10/97	9/12/97
Bromoform	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Acetone	< 10	10	ug/L	1	9/10/97	9 /12/97
Carbon Disulfide	< 5	5	ug/L	1	9/10/97	9 /12/9 7
2-Butanone	< 10	10	ug/L	1	9/10/97	9 /12/9 7
2-Hexanone	< 10	10	ug/L	1	9 /10/9 7	9 /12/9 7
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9/12/97

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972158-007	Method: 8260
Client ID : GW-091097-KD-011	 Matrix: WATER

Compound	Result	<u>PQL</u>	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	1	9/10/97	9/12/97
Bromomethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Chloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9 /12/97
trans-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
cis-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Chloroform	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,1-Trichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/97
Carbon Tetrachloride	< 5	5	ug/L	1	9 /10/9 7	9 /12/97
Benzene	< 5	5	ug/L	1	9 /10/9 7	9/12/97
1,2-Dichloroethane	< 5	5	ug/L	1	9 /10/9 7	9 /12/97
Trichloroethene	< 5	5	ug/L	1	9/10/97	9 /12/97
1,2-Dichloropropane	< 5	5	ug/L	1	9/10/97	9/12/97
Bromodichloromethane	< 5	5	ug/L	1	9/10/97	9 /12/97
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Toluene	< 5	5	ug/L	1	9/10/97	9 /12/97
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Tetrachloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Dibromochloromethane	< 5	5	ug/L	1	9/10/97	9 /12/97
Chlorobenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Ethylbenzene	< 5	5	ug/L	1	9 /10/97	9 /12/9 7
Xylenes, Total	< 10	10	ug/L	1	9/10/97	9/12/97
Styrene	< 5	5	ug/L	1	9/10/97	9 /1 2 /9 7
Bromoform	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	İ	9 /10/9 7	9/12/97
Acetone	< 10	10	ug/L	1	9 /10/9 7	9/12/97
Carbon Disulfide	< 5	5	ug/L	1	9/10/97	9/12/97
2-Butanone	< 10	10	ug/L	1	9/10/97	9/12/97
2-Hexanone	< 10	10	ug/L	I	9/10/97	9/12/97
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9/12/97

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972158-008 Method: 8260
Client ID: GW-091097-KD-012 Matrix: WATER

<u></u>						
Compound	Result	PQL	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	Ī	9/10/97	9/12/97
Bromomethane	< 5	5	ug/L	Ī	9/10/97	9 /12/9 7
Chloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9 /12/9 7
trans-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9 /1 2/97
cis-1,2-Dichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
Chloroform	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1,1-Trichloroethane	< 5	5	ug/L	1	9/10/97	9 /1 2 /9 7
Carbon Tetrachloride	< 5	5	ug/L	l	9/10/97	9 /1 2 /9 7
Benzene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloroethane	< 5	5	ug/L	1	9 /10/97	9/12/97
Trichloroethene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloropropane	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
Bromodichloromethane	< 5	5	ug/L	1	9/10/97	9 /1 2/97
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
Toluene	< 5	5	ug/L	l	9/10/97	9 /12/9 7
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9 /10/97	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9 /10/9 7	9 /1 2/97
Tetrachloroethene	< 5	5	ug/L	1	9 /10/9 7	9 /12/97
Dibromochloromethane	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Chlorobenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Ethylbenzene	< 5	5	ug/L	1	9/10/97	9 /1 2 /97
Xylenes, Total	< 10	10	ug/L	1	9 /10/9 7	9/12/97
Styrene	< 5	5	ug/L	1	9/10/97	9/12/97
Bromoform	< 5	5	ug/L	1	9 /10/9 7	9 /1 2 /9 7
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	1	9 /10/97	9/12/97
Acetone	< 10	10	ug/L	1	9/10/97	9/12/97
Carbon Disulfide	< 5	5	ug/L	1	9 /10/9 7	9 /1 2 /9 7
2-Butanone	< 10	10	ug/L	1	9/10/97	9/12/97
2-Hexanone	< 10	10	ug/L	1	9/10/97	9/12/97
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9/12/97

Project ID: 6711
Site: LENZ OIL

EPA Target Compound List (TCL) GCMS Volatiles Analysis

Lab Sample Number: L72972158-009
Client ID: TRIP BLANK
Matrix: WATER

						
Compound	Result	PQL	<u>Units</u>	Dilution Factor	Sample Date	Analysis Date
Chloromethane	< 5	5	ug/L	1	9/10/97	9/12/97
Vinyl Chloride	< 5	5	ug/L	1	9/10/9 <i>1</i>	9 /12/9 7
Bromomethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Chloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1-Dichloroethene	< 5	5	ug/L	1	9/10/97	9 /12/97
Methylene Chloride	< 5	5	ug/L	1	9/10/97	9 /12/9 7
trans-1,2-Dichloroethene	< 5	5	ug/L	1	9 /10/9 7	9/12/97
1,1-Dichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/97
cis-1,2-Dichloroethene	< 5	5	ug/L	I	9/10/97	9 /12/9 7
Chloroform	< 5	5	ug/L	1	9/10/97	9/12/97
1,1,1-Trichloroethane	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Carbon Tetrachloride	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Benzene	< 5	5	ug/L	1	9/10/97	9/12/97
1,2-Dichloroethane	< 5	5	$\mathbf{u}_{\mathbf{g}'}$ \mathbf{L}	1	9/10/97	9/12/97
Trichloroethene	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
1,2-Dichloropropane	< 5	5	ug/L	1	9/10/97	9/12/97
Bromodichloromethane	< 5	5	ug/L	I	9 /10/9 7	9/12/97
cis-1,3-Dichloropropene	< 5	5	ug/L	1	9/10/97	9 /12/9 7
Toluene	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
trans-1,3-Dichloropropene	< 5	5	ug/L	1	9 /10/9 7	9/12/97
1,1,2-Trichloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Tetrachloroethene	< 5	5	ug/L	1	9 /10/9 7	9/12/97
Dibromochloromethane	< 5	5	ug/L	ì	9 /10/9 7	9/12/97
Chlorobenzene	< 5	5	ug/L	1	9 /10/9 7	9 /12/97
Ethylbenzene	< 5	5	ug/L	1	9/10/97	9/12/97
Xylenes, Total	< 10	10	ug/L	1	9/10/97	9/12/97
Styrene	< 5	5	ug/L	1	9/10/97	9/12/97
Bromoform	< 5	5	ug/L	1	9/10/97	9 /12/9 7
1,1,2,2-Tetrachloroethane	< 5	5	ug/L	1	9/10/97	9/12/97
Acetone	< 10	10	ug/L	1	9/10/97	9 /12/9 7
Carbon Disulfide	< 5	5	ug/L	1	9 /10/9 7	9 /12/9 7
2-Butanone	< 10	10	ug/L	1	9 /10/9 7	9 /12/9 7
2-Hexanone	< 10	10	ug/L	1	9 /10/9 7	9 /1 2 /9 7
4-Methyl-2-Pentanone	< 10	10	ug/L	1	9/10/97	9 /12/9 7

Client: Conestoga Rovers 1EA Job#: L72972158

Project ID: 6711

Method: 8260

Method Blank Report EPA Target Compound List (TCL) GCMS Volatiles Analysis µg/L

		·			
Dilution Factor					
	Method				
Client ID	Blank			PQL	
	101001207		1 1		
Analyte Lab ID	VN091297				
Chloromethane	U			5	
Bromomethane	U			5	
Vinyl Chloride	U		_	5	
Chloroethane	U			5	
Methylene Chloride	U			5	
Acetone	U			10	
Carbon Disulfide	U			5	
1,1-Dichloroethene	U			5	
1,1-Dichloroethane	U			5	
cis-1,2-Dichloroethene	U			5	
trans-1,2-Dichloroethene	U			5	
Chloroform	U			5	
1,2-Dichloroethane	U			5	
2-Butanone	U			10	
1,1, 1-Trichloroethane	Ŭ			5	
Carbon Tetrachloride	U			5	
Bromodichloromethane	U			5	
1,2-Dichloropropane	U			5	
Trans-1,3-dichloropropene	U			5	
Trichloroethene	U			5	
Dibromochloromethane	U			5	
1,1,2-Trichloroethane	U			5	
Benzene	U			5	
cis-1,3-Dichloropropene	U			5	
Bromoform	U			5	
4-Methyl-2-Pentanone	U			10	
2-Hexanone	U			10	
Tetrachloroethene	U			5	
1,1,2,2-Tetrachloroethane	U			5	
Toluene	IJ			5	
Chlorobenzene	U			5]
Ethylbenzene	U			5]
Styrene	U			5	
Total Xylenes	U			10	
Date Analyzed	9/12/97				
Date Analyzeu	1112111				

PQL = Practical Quantitation Limit

To obtain the sample-specific quantitation limit, multiply the PQL by the Dilution Factor.

FORM II VOLATILE ORGANIC SURROGATE RECOVERY

Lab Name: AEN	Client Name: Conestoga Rovers
Matrix: (soil/water) Water	Method No.: 8260

		S1	S2	S3	Other	TOT
	Sample No.	(DCE) #	(TOL) #	(BFB) #	#	OUT
01	VN091297	101%	98%	102%		0
02	QCCK091297	108%	103%	101%		0
03	L72972158-001	105%	101%	102%		0
04	L72972158-002MS	99%	102%	100%		0
05	L72972158-003MD	107%	103%	99%		0
06	L72972158-004	105%	104%	100%		0
07	L72972158-005	106%	100%	102%		0
08	L72972158-006	104%	101%	101%		0
09	L72972158-007	105%	102%	105%		0
10	L72972158-008	102%	98%	99%		0
11	L72972158-009	106%	100%	99%		0
12						
13						
14						
15						
16						
17		-				
18						
19						
20		·				
21						
22					<u></u>	
23						
24						
25						
26						
27						
28						
29						
30[

	QC Limits
S1 (DCE) = 1,2-Dichloroethane-d4	76-114%
S2 (TOL) = Toluene-d8	88-110%
S3 (BFB) = Bromofluorobenzene	86-115%
Other= Not Used	

- #--Column used to flag recovery values
- *--Value outside QC Limits
- D--Surrogates diluted out

FORM III ORGANIC QC CHECK FORM

Lab Name: IEA, Inc.	Sample No. : VN091297
Matrix: (soil/water) Water	Method No.: 8240B/8260A

	Spike	Sample	MS	MS		QC
	Added	Concentration	Concentration	%	ŀ	Limits
COMPOUND	(μg/L)	(μg/L)	(μg/L)	Rec	#	Rec.
1,1-Dichloroethene	50	0	48	96%		61-145
Trichloroethene	50	0	53	106%		71-120
Benzene	50	0	51	102%		76-127
Toluene	50	0	49	98%		76-125
Chlorobenzene	50	0	46	92%		75-130

*--Values outside of QC Limits

Spike Recovery : _	0	out of	5	outside limits
Comments:				
_				
_				
				

Some Recovery and RPD Summary Report - WATER

Method : K:\CHEMSTN\MSN\METHODS\TCLH2ON.M
Title : Method 8240B/8260A in Water;TK ; Calib on 9/3/97
Last Update : Thu Sep 04 09:50:32 1997

Response via : Initial Calibration

Non-Spiked Sample: MSN5434.D

Spike Spike

Sample Duplicate Sample

File ID: MSN5435.D
Sample: L72972158-002ms
Acq Time: 12 Sep 97 16:04

MSN5436.D
L72972158-003md
12 Sep 97 16:42

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
1,1-dichloroethene benzene trichloroethene toluene chlorobenzene	0.0	50 50 50 50	49 51 49 51 50	50 51 52 54 51	99 102 99 102 100	101 101 104 108 102	2 0 5 6 2	14 11 14 13 13	61-145 76-127 71-120 76-125 75-130

- Fails Limit Check

TCLH2ON.M Sun Sep 14 10:30:11 1997

CRA	SHIPPED TO (Lo							
CONESTOGA-ROVERS & ASSOCIATES	IEA	1-50	m	umburg				
10400 West Higgins Road — Suite 103 Rosemont, IL 60018 (708)299—9933	REFERENCE NUM	ABER:		PROJECT NAME:				
CHAIN OF CUSTODY RECORD	4			LENZ OIL				
SAMPLER'S O () D PRINTE			RS	PARAMETERS / / / / / /				
SIGNATURE: LON WILLIAM NAME	: Ken Duwal		A NE	_so ³ /// REMARKS				
NO.	SAMPLE No.		No.	PARAMETERS REMARKS				
9/10/979:12 GW-091097-KD0	ms/msd	water	Q					
11:05 GW-091097-KD-0	3.05 GW-091097-KD-008			X + + + + + + + + + + + + + + + + + + +				
11:05 6W-091097-KD-1			3	SHIP HIST/				
19:15 GW-091097-120-	011		2	Second House				
13:45 GW-091097-KI	>-019		ere ere	X JUYY XIY OULD				
TRIP BLANK			3					
			† -					
			ļ					
			· · · ·					
TOTAL NUMBER OF CONTAINERS 18								
RELINQUISHED BY: DATE: 9/10/97 TIME: 17:00 DATE: 9/10/97								
RELINQUISHED BY: DATE:								
3 V M	TIME: 8:4			TIME:				
RELINQUISHED BY:	DATE:	R (4		ED BY: DATE: TIME:				
METHOD OF SHIPMENT: Hond Delivery AIR BILL No.								
White -Fully Executed Copy SAMPLE TEAM: RECEIVED FOR LABORATORY BY:								
Yellow -Receiving Laboratory Copy K. Diwa				Supremental Nº 5330				
Pink -Shipper Copy Goldenrod -Sampler Copy A. Charton				DATE: 9/1/97 TIME: 845 0 2 102				
1001(FORMS)-APRIL 29, 93-REV.0-(C)(F-01)								

APPENDIX G

DATA VALIDATION MEMOS

MEMO

TO: Walt Pochron

REFERENCE NO: 6711

FROM: Nancy Bergstrom Milb

DATE: October 1, 1997

RE:

Data Quality Assessment and Validation for the Samples Collected from the

Lenz Oil Site in Lemont, Illinois

The following details a data quality assessment and validation for the samples collected from the Lenz Oil Site in Lemont, Illinois. The samples, which are identified in Table 1, were analyzed for target compound list (TCL) volatile organic compounds (VOC) by American Environmental Network, Inc. (AEN, Inc., formerly IEA, Inc.) of Schaumburg, Illinois using method 8240 from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA SW-846, 3rd Edition with promulgated Updates, November 1986. The quality control criteria used to assess the data were established by the methods of analysis.¹

Holding Time Period

The holding time period follows:

TCL VOC - 14 days from sample collection to completion of analysis

The samples were prepared and analyzed within the required holding time period.

Method Blank Samples

Contamination of samples contributed by laboratory conditions or procedures was monitored by the data from concurrent preparation and analysis of method blank samples. Target analytes were not detected in the method blank samples.

Surrogate Compound Percent Recoveries

Individual sample performance for the organic analyses was monitored by assessing surrogate compound percent recovery data. The surrogate recovery acceptance criteria was met.

¹ Application of quality assurance criteria was consistent with the relevant criteria in "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review ", EPA-540/R-94/012, February 1994.

Laboratory Control Samples

Laboratory control sample (LCS) analysis serves to monitor the accuracy of the laboratory preparation and analysis methods. The LCS percent recoveries were acceptable.

MS/MSD Samples

To assess the accuracy and precision of the analytical methods relative to the sample matrices, MS/MSD percent recoveries and RPDs were determined. The percent recovery and RPD acceptance criteria were met for the MS/MSD samples.

Additional Quality Control Concerns

Several results for sample L-080797-WP-004 were qualified with an "E" by the laboratory. The "E" qualifier denotes that the concentration for a compound exceeds the calibration range of the instrument. A subsequent dilution diluted several of the compounds out of the sample. Therefore, the 1,1-dichloroethane, cis-1,2-dichloroethene, 1,1,1-trichloroethane, and benzene results from the undiluted run of sample L-080797-WP-004 should be used and should be qualified as estimated (J).

Overall assessment

The data were found to exhibit acceptable levels of accuracy and precision and are suitable for their intended use with the qualifications presented herein.

NMB/ko/1 Attachments

cc: S. Day

TABLE 1

SAMPLE IDENTIFICATION NUMBERS LENZ OIL SITE LEMONT, ILLINOIS

L-080797-WP-001 L-080797-WP-003 L-080797-WP-004

MEMO

TO:

Walt Pochron

REFERENCE NO. 6711

FROM:

Nancy Bergstrom NMB

DATE: October 2, 1997

C.C.:

Steve Day

RE:

Data Quality Assessment and Validation for the Soil and Groundwater

Samples Collected from the Lenz Oil Site in Lemont, Illinois

The following details a data quality assessment and validation for the soil and groundwater samples collected from the Lenz Oil Site in Lemont, Illinois. The samples, which are identified in Table 1, were analyzed for target compound list (TCL) volatile organic compounds (VOC) by American Environmental Network, Inc. (AEN, Inc., formerly IEA, Inc.) of Schaumburg, Illinois using method 8260 from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA SW-846, 3rd Edition with promulgated Updates, November 1986. The quality control criteria used to assess the data were established by the methods of analysis.¹

Holding Time Period

The holding time period follows:

TCL VOC - 14 days from sample collection to completion of analysis

The samples were prepared and analyzed within the required holding time period.

Method Blank Samples

Contamination of samples contributed by laboratory conditions or procedures was monitored by the data from concurrent preparation and analysis of method blank samples. Target analytes were not detected in the method blank samples.

Surrogate Compound Percent Recoveries

Individual sample performance for the organic analyses was monitored by assessing surrogate compound percent recovery data. Two surrogate recoveries violated the acceptance criteria and the results and quantitation limits for sample S-090297-WP-005

¹ Application of quality assurance criteria was consistent with the relevant criteria in "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review ", EPA-540/R-94/012, February 1994, and "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review ", EPA-540/R-94-013, February 1994.

should be qualified as estimated (J and UJ, respectively). The remaining surrogate recovery acceptance criteria was met.

Laboratory Control Samples

Laboratory control sample (LCS) analysis serves to monitor the accuracy of the laboratory preparation and analysis methods. The LCS percent recoveries were acceptable.

MS/MSD Samples

To assess the accuracy and precision of the analytical methods relative to the sample matrices, MS/MSD percent recoveries and RPDs were determined. The percent recovery and RPD acceptance criteria were met for the MS/MSD samples.

Field Quality Assurance/Quality Control (QA/QC)

The field QA/QC consisted of one field duplicate sample sets and one trip blank sample.

Overall precision for the sampling and analysis event was monitored using the results of field duplicate sample sets. Analytes were not detected in the field duplicate sample set.

To monitor potential cross-contamination of VOCs during sample transportation and storage, a trip blank sample was submitted to the laboratory for VOC analysis with each shipping cooler containing VOC samples. Target analytes were not reported as being detected in the trip blank sample.

Overall assessment

The data were found to exhibit acceptable levels of accuracy and precision and are suitable for their intended use with the qualifications presented herein.

NB/lo/2

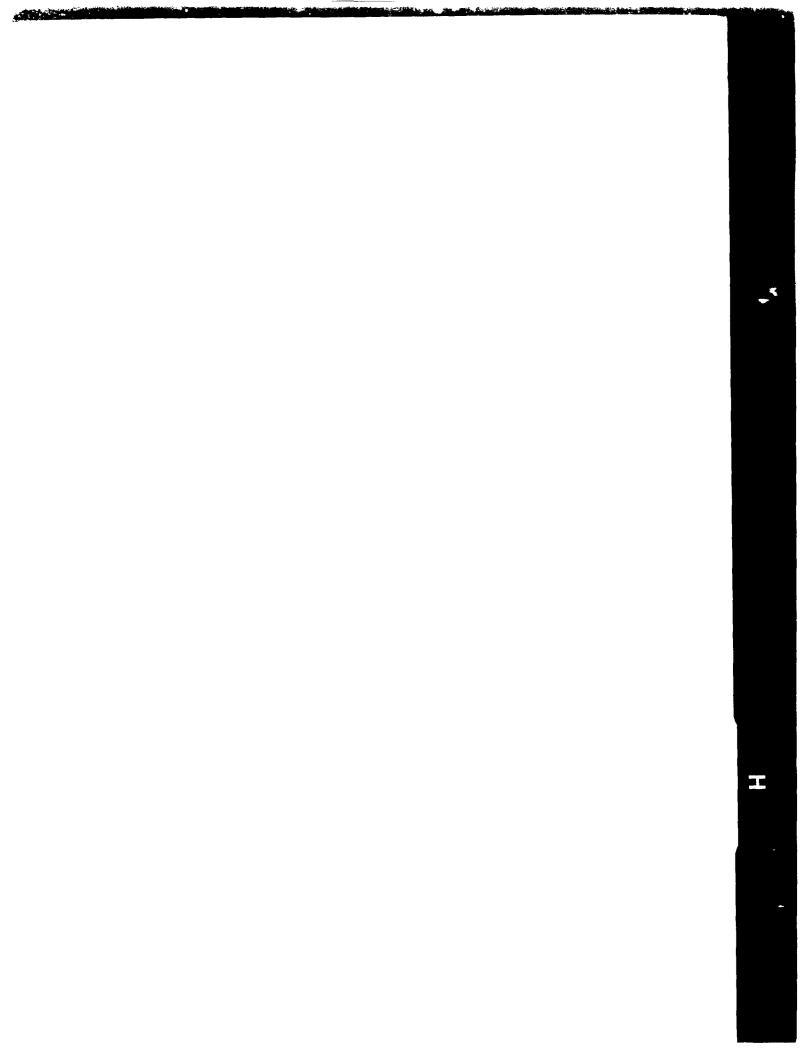
Attachments

TABLE 1

SAMPLE IDENTIFICATION NUMBERS LENZ OIL SITE LEMONT, ILLINOIS

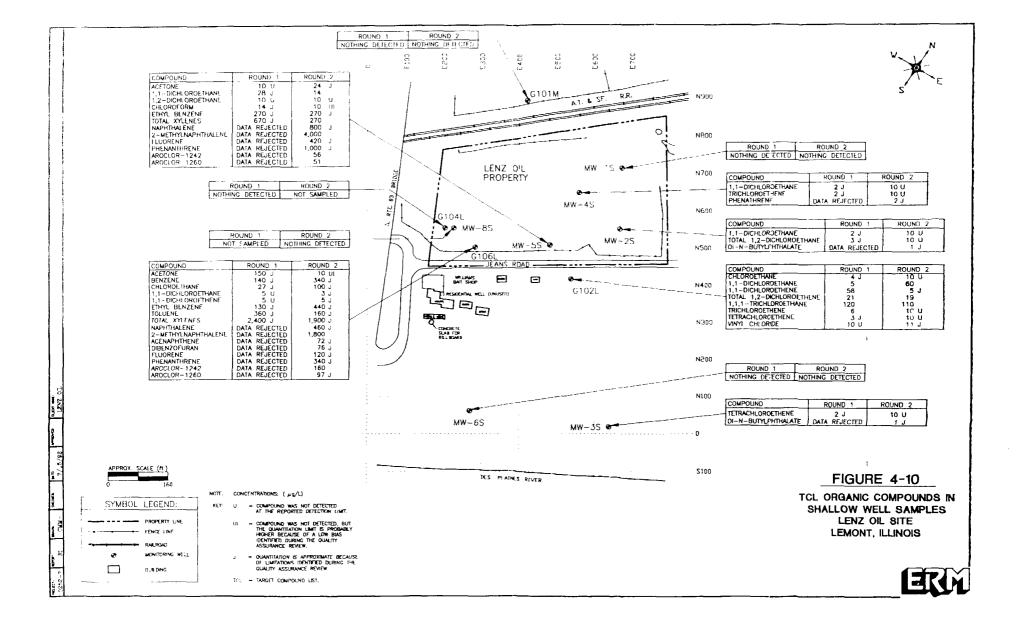
S-090297-WP-005 S-090397-WP-006

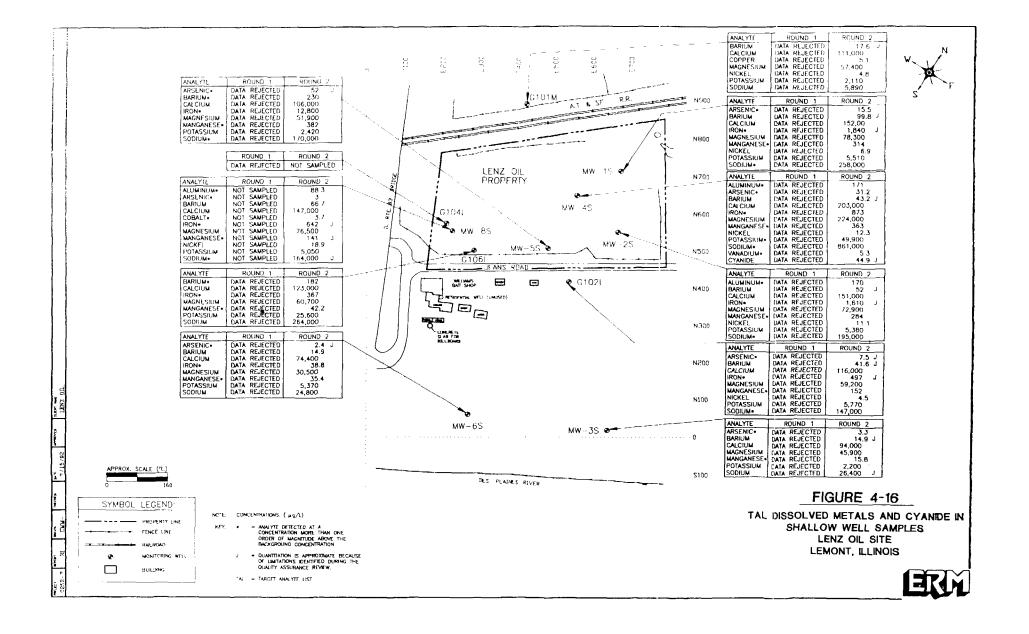
GW-091097-KD-007

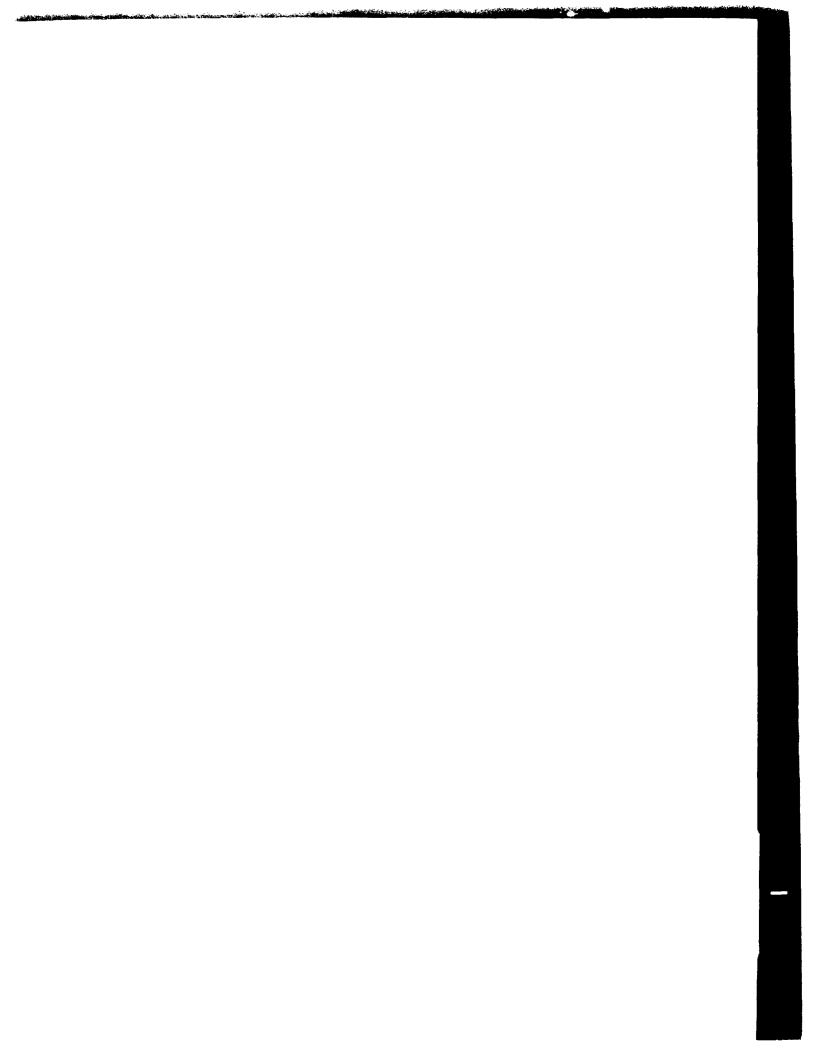

GW-091097-KD-008

GW-091097-KD-009

GW-091097-KD-010


GW-091097-KD-011


GW-091097-KD-012

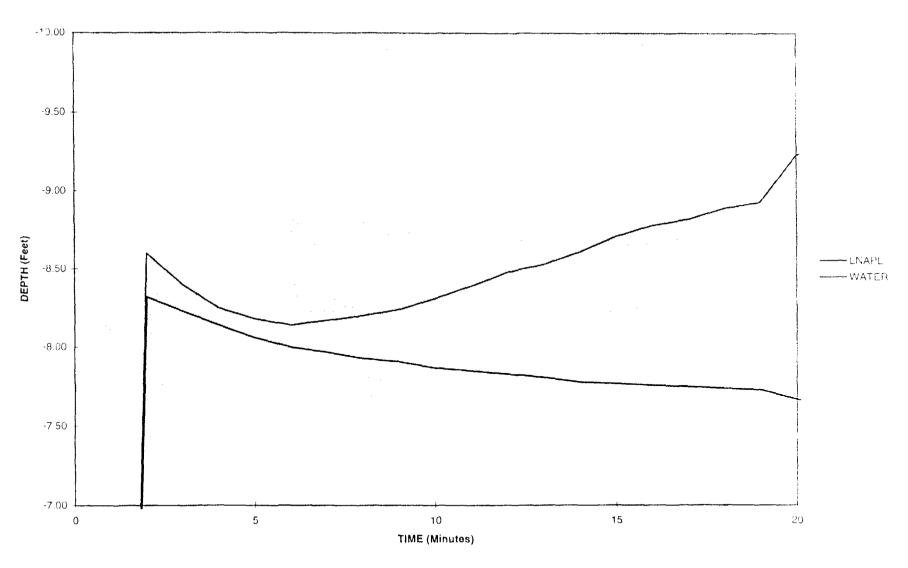


APPENDIX H

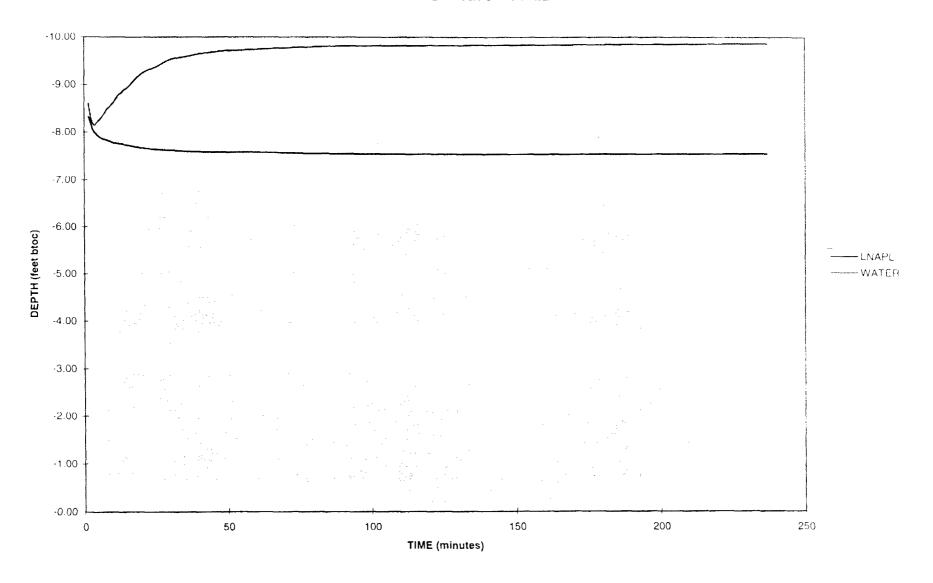
FIGURES ILLUSTRATING SHALLOW GROUNDWATER
ANALYTICAL RESULTS FROM THE RI

APPENDIX I LNAPL RECOVERY DATA AND GRAPHS

PRODUCT RECOVERY TEST LENZ OIL SITE LEMONT, ILLINOIS


Well Tested
Date Tested
Pre-Test Data
Depth To LNAPL
Depth To Water

P20 8-Sep-97


7.09 feet btoc 12.97 feet btoc

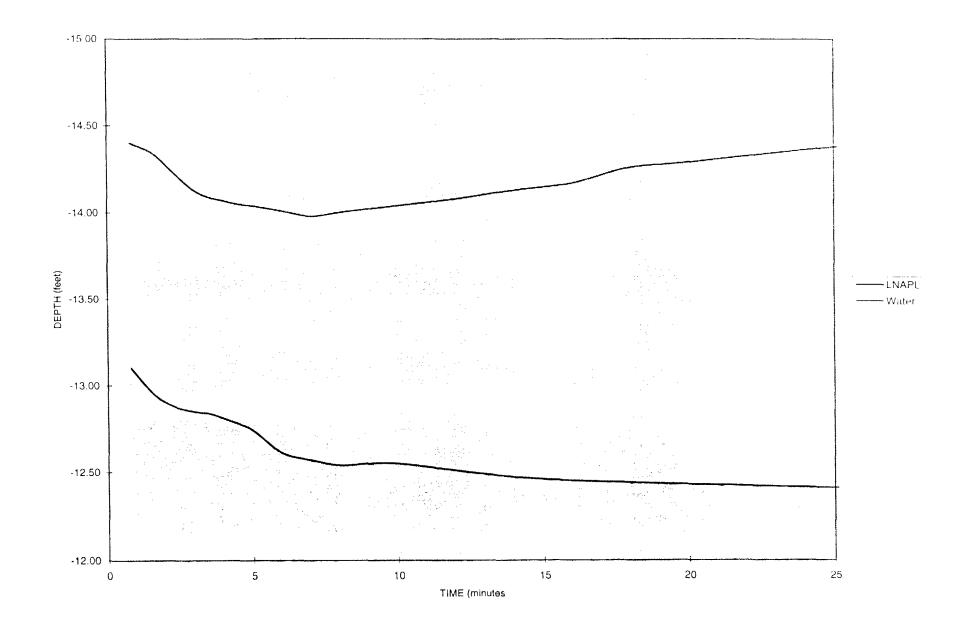
TIME	LNAPL	WATER
(minutes)	(feet btoc)	(feet btoc)
1.5	-8.32	-8.60
2	-8.23	-8.40
2.5	-8.14	-8.25
3	-8.06	-8.18
3.5	-8.00	-8.14
4	-7.97	-8.17
4.5	-7.93	-8.20
5	-7.91	-8.24
6	-7.87	-8.31
7	-7.85	-8.39
8	-7.83	-8.48
9	-7.81	-8.53
10	-7.78	-8.61
11	-7.77	-8.71
12	-7.76	-8.78
13	-7.75	-8.82
14	-7.74	-8.89
15	-7.73	-8 93
20	-7.67	-9.23
25	-7.64	9.37
30	-7.62	-9.52
35	-7.60	-9.58
40	-7.59	-9.64
45	-7.58	-9.68
50	-7.58	-9.71
55	-7.58	-9.72
60	-7.58	-9.74
75	-7.56	-9.78
90	-7.55	-9.81
148	-7.54	-9.83
237	-7.55	-9.86

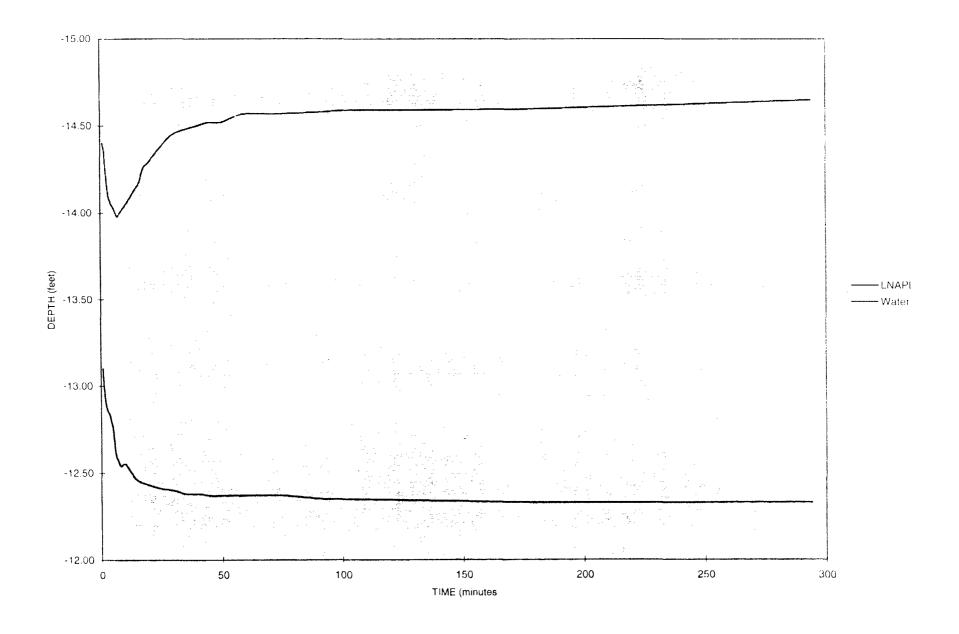
WATER/LNAPL LEVELS vs. TIME P-20

WATER / LNAPL LEVELS vs. TIME P20

Page 1

PRODUCT RECOVERY TEST LENZ OIL SITE LEMONT, ILLINOIS


Well Tested
Date Tested
Pre-Test Data
Depth To LNAP


P19 10-Sep-97

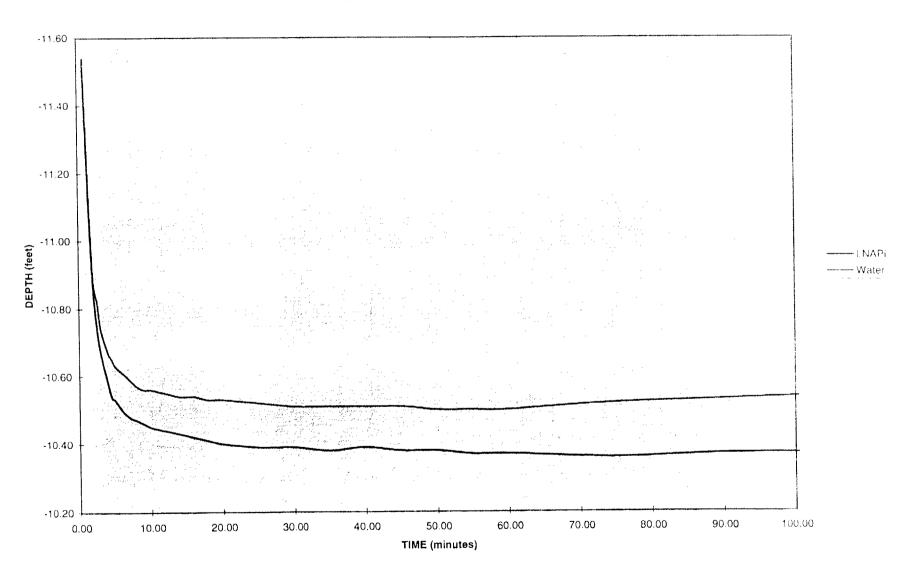
Depth To LNAPL
Depth To Water

12.07 feet btoc 16.55 feet btoc

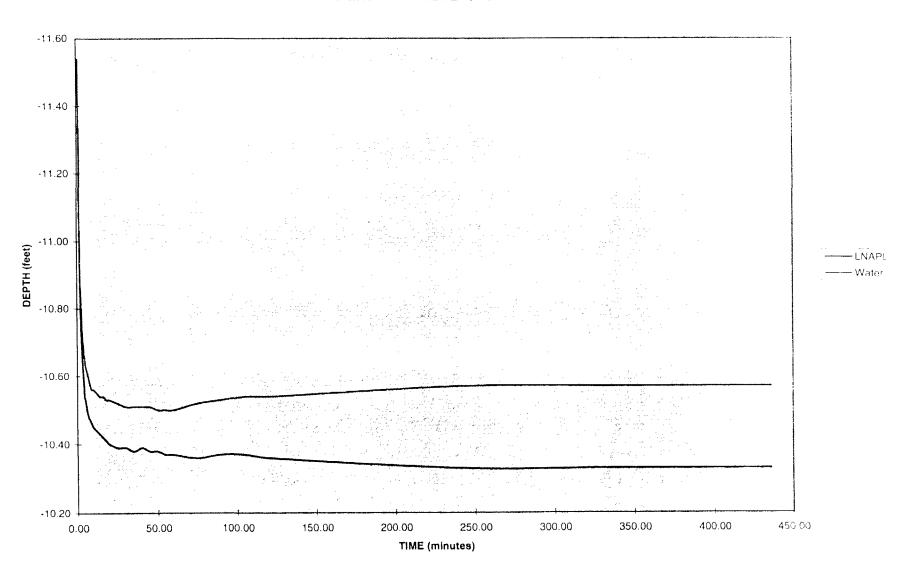
Time	LN. 'L	Water	
(minutes)	(feet btoc)	(feet btoc)	
0.80	-13.10	-14.40	
1.6	-12.95	-14.34	
2.3	-12.88	-14.23	
3	-12.85	-14.13	
3.5	-12.84	-14.09	
4	-12.81	-14.07	
4.5	-12.78	-14.05	
5	-12.74	-14.04	
6	-12.61	-14.01	
7	-12.57	-13.98	
8	-12.54	-14.00	Inflection at 1.46 feet
9	-12.55	-14.02	
10	-12.55	-14.04	
12	-12.51	-14.08	
14	-12.47	-14.13	
16	-12.45	-14.17	
18	-12.44	-14 26	
20	-12.43	-14.29	
25	-12.41	-14.38	
30	-12.40	-14.45	
35	-12.38	-14.48	
40	-12.38	-14.50	
45	-12.37	-14.52	
50	-12.37	-14.52	
55	-12.37	-14.55	
60	-12.37	-14.57	
75	-12.37	-14.57	
92	-12.35	-14.58	
105	-12.35	-14.59	
185	-12.33	-14.60	
294	-12.33	-14.65	

PRODUCT RECOVERY TEST LENZ OIL SITE LEMONT, ILLINOIS

Well Tested
Date Tested
Pre-Test Data
Depth To LNAPL
Depth To Water


G106L 10-Sep-97

Measurements During Recovey Test Attempt 9/8/97


10.26 feet btoc 9.92 feet btoc 11.15 feet btoc 12.52 feet btoc

Time	LNAPL	Water	
(minutes)	(feet btoc)	(feet btoc)	
0.80	-11.53	-11.54	
1.5	-11.09	-11.11	
2	-10.86	-10.88	
2.5	-10.74	-10.82	
3	-10.67	-10.74	
4	-10.58	-10.67	
4.5	-10.54	-10.65	
5	-10.53	-10.63	
6	-10.50	-10.61	
7	-10.48	-10.59	
8	-10.47	-10.57	
9	-10.46	-10.56	
10	-10.45	-10.56	
12	-10.44	-10.55	
14	-10.43	-10.54	
16	-10.42	-10.54	
18	-10.41	-10 53	
20	-10.40	-10.53	
25	-10.39	-10.52	
30	-10.39	-10.51	
35	-10.38	-10.51	
40	-10.39	-10.51	
45	-10.38	-10.51	
50	-10.38	-10.50	
55	-10.37	-10.50	
60	-10.37	-10.50	
75	-10.36	-10.52	Inflection at 0.16 feet
90	-10.37	-10.53	
105	-10.37	-10.54	
120	-10.36	-10.54	
242	-10.33	-10.57	
336	-10.33	-10.57	
436	-10.33	-10.57	

WATER / LNAPL LEVELS vs. TIME G106L

WATER / LNAPL LEVELS vs. TIME G106L

